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ABSTRACT

’

The pressure waves scattered by an infinite cylindrical cavity filled with air in a homogeneous me-
divm have been calculated for the incident plane pressure waves, For ka = 1/2, 1, 2, 4, 10 and 20, the
scattered pressure waves are plotted, where k is the wave number and a is the radius of the cylindrical
hole. As an indicator of the directivity of the scattering pattern, we have defined the angle at which the
magnitude of the scattered pressure wave decreases by a half(6 dB) with respect to that of the forward
peak scattered pressure wave. This angle depends strongly on the values of ka and the distance 1, and the
angle can be used for the detection of the location and the size of the cavity in a homogeneous medium.
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ing patterns of a wave have informations about
I. INTRODUCTION size and location of a scattering object. In the
cases that the scattering objects are acoustically

i in object by acoustical - .
In detecting a certain ob) ¥ acoustica rigid or soft, the scattered wave has been derived

waves, it is very important to know the scattering in many books and papers.[3.4] However. in

attern caused by an object vecause the scattei . . . , .
P ¥ an objec - practice, the scattering object is neither acousts-

cally rigid nor soft. In this paper, the scattered
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pressure wave caused by an infinite cylindrical
cavity with impedance is derived in series form
of the Bessel and Neumann functions and cal-
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culated by computer. Here, the incident wave
is assumed to be plane and monochromatic.
Although the analysis has been performed in
frequency domaijn, the results can be used in
time domain using the Fourier transform.

II. THEORY

Suppose we put P and 4n for the pressure
and normal velocity component of the incident
wave, po and Teny for the scattered wave in
the external medium, and P and G, for the
quantities in the internal medium(medium in
cylindrical cavity). In the following all functions
and quantities referring to the internal medium
are denoted by a bar on top.

In cylindrical coordinates, the incident plane
wave p, can be expanded into a series of cylindri-
cal waves{Fig.1] for matching to the boundary
conditions,

Fig. 1. Cylinder with a plane wave incidence from
¢=180 direction
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where, em is the Neumann coefficient which has
the value 1 for m=0 and 2 for m>0, i is the
imaginary unit(~,/—jand J . is the Bessel func-
tion of order m. And the scattered pressure
wave p, can be obtained from the wave equation:
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Excluding the time dependent term o 't = the
wave equation becomes the Helmholtz equation:
7lps+kips= 0, (k=w/cl -3

Put ps= R{rig{¢).then Eq.i[[~3 lis divided. into
the following two ordinary differential equation,
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The solutions of Eq.(II-4 a) are [1,'' kriand
afkr}, the first and second kind Hankel func-
tions of order m. But since the scattered pressure
wave is an out-going wave, the second kind
Hanke! function, HZ' (k! must be rejected, And
the solution of Eq.(II-4 b) are gin im¢! and cos
im¢) But sin {md) is not symmetric about x-axis,
then must be discarded. Also, m is not symmetric
about X-axis, then must be discarded. Also, m
is integer because cos im¢). has same vaiue at

$=0.27 4n,... Therefore, the scattered pressure

wave p is given by

Pe— 1 AnHp''' (kricosimg)e™'* tff -5
mwl

where Am are arbitary constants. Also, since the
Neumann function becomes infinity at =0,
for the internal medium in the cavity, the pres-
sure field in the internal medium of the cavity,
P is given by

B 2 Amim 'fT&l'}(‘us{mﬁ}t"l‘"", R R
m=0

where A_ are arbitrary constants.
And the normal velocity components for
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the incident and scattered pressure waves are
given by
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Also, for the internal medium of the cavity,
the normal velocity component is given by
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In Eq.(I1-7), (II-8) and (II-9), p and p are
the densities of the external and the internal
medium, and the prime denotes the derivative
with respect to its argument, The arbitrary
coefficients An and A, are determined from the
boundary conditions.

The boundary conditions consist of the
continuity of the pressure and the normal velo-
city component at the surface of the cylindrical
cavity. Then the boundary conditions can be
written in the following forms:

Pr b pal lpan =P lr-a. ‘H L
(-1

where a is the radjus of the cylindrical cavity.

(qnt l'lsn} {r.a=Tnlir-a

Provided the surface oscillation amplitude of the
cylinder is very small so that it can be assumed
that a is constant. Inserting Eq.(Ii-1) and Eq.(11-
5}II-9) into Eq.(11-10) and - Eq.(1I-11), we
can obtain the following two equations,
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From above two equations, we can determine
the coefficients A~ and Xm. Since we are
interested in the scattered pressure wave Pg We
solve for A_.. Then
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wherea- | 5~ 7% If the cylindrical cavity

is acoustically rigid, a°> becomes zero and the
cylindrical cavity is acoustically soft, @ becomes
infinity.

Therefore, the scattered pressure wave pg is
given by
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For short wavelengths, the values of ka,
ka and kr are large. Using the useful approxima-
tion formulae for the Bessel and Neumann
functions and their derivatives:
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the coefficient Am becomes

{—cos ¥siny +
{cos ¥siny—a sinYcos ¥

An= gni®

asinYcos x!
=i {cos¥sin ¥+ a sin¥cos yi

(fl--16)

where ¥—ka— 27— ’-;— and ¥=ka— %.x—i
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Also, the first kind Hankel function becomes
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Therefore, the scattered pressure wave P becmes
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M. CALCULATIONS AND RESULTS

We have derived the pressure waves scattered
by an infinite cylindricat cavity with impedance.
And, when the magnitude of the incident pre-
ssure wave is unit, we have calculated the scatter-

ed pressure wave for ka=1/2, I, 2, 4, 10 and 20,
and the distance r=5.5a, 5a, 10a and 20a, in the
media. From the results of the Eq.(II-15), the
scattered waves are plotted in the Fig2 to
Fig.5, in step of 5 degree. In calculation, 30
terms in series are evaluated, and this is confirm-
ed to be sufficiently accurate, where the number
of terms are dependent on the values of o, ka
and ka. The physical constants in calculation
are listed in Tgble I

Table I. Physical constants in calculation

(Granite) (Air in cavity)
External medium | Internal medium
Density 2700 Kg/m® 1.21 Kg/m®
Speed of sound 7610 m/s 343 mfs .
* 3 ko= §

(arbitrary wunit)
{a)

1 ka=4

{arbitrory untt)
(b}

Fig. 2. Calculated scattered wave at 1=2.5a.

From the Fig.2 to Fig.5, the forward peak

occurs at ¢ =0, except the case of ka=20, r=2.5a,
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and the directivity is apparently appeared for
the case of ka > 2. However, in the cases of
ka=1/2 and 1, the directivity is very weak, nearly
omnidirectional. And to represent the directivity
of the scattered pressure wave, we have found
the angle at which the magnitude of the scattered
pressure wave decreases by a half (6 dB) with
respect to that of the forward peak scattered
pressure wave. But in the case of ka=20, t=2.52
the forward peak does not occur at ¢=0, how-
ever we have found the angle decreasing by a
half(6 dB) with respect to the magnitude of the
forward scattered pressure at ¢ =0, therefore,
the angle of ka=10, r=2.5a is smaller than that
of ka=20, r=2.5a. This angle is shown in Table
I1.

The angle varies apparently with the value
of ka and the distance r. Therefore, it is expected
that the angle can be used for detection of the
location and the size of the cavity in a homo-
geneous medjum,

*, hao=.5

{orbitrory wunitd
(a)

* 3 Kow=4

(arbitrory wnit)
{b)

Fig. 3. Calculated scattered wave at r=5a.
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Table 11. Angle decreasing by half (deg.)

o 2 4 10 20
25 . 50 28 32
s 55 28 14 12
10 50 26 i1 6.5
20 47 25 10.5 6

* 1 ha=.5

(arbttrary unit)

(a)

tarbitrary untt)
(b)

Fig. 4. Calculated scattered wave at 1=10a.

(arbitrary unit)

(a)
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* 1+ ka=4
X 1+ ka=l10
0 1 ka=20

(orbitrary unit)
()

Fig. 5. Calculated scattered wave at r=20a.
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