• Title/Summary/Keyword: Peak Impact

Search Result 627, Processing Time 0.031 seconds

Evaluation of the Influence of Inland Pollution Sources on Shellfish Growing Areas after Rainfall Events in Geoje Bay, Korea (강우에 따른 거제만해역 육상오염원의 영향평가)

  • Ha, Kwang-Soo;Yoo, Hyun-Duk;Shim, Kil-Bo;Kim, Ji-Hoe;Lee, Tae-Seek;Kim, Poong-Ho;Ju, Ja-Yeon;Lee, Hee-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.612-621
    • /
    • 2011
  • The influences of inland pollution sources because of rainfall events on the bacteriological water quality in Geoje Bay, a major shellfish production area in Korea, were investigated. The sanitary status of sea water and shellfish after rainfall events was also evaluated. The flow rates of 13 streams around Geoje Bay showed 6 to 7-fold increases after 15 to 21 mm of rainfall. Peak pollution was observed in the Naegan Stream, the Gandeok Stream and the Seojeong Stream. The calculated impact area of inland pollution sources was 3.1 $km^2$ immediately after 15 mm of rainfall and expanded to 3.5 $km^2$ after 24 hours. These calculations of impacted area matched results from fecal coliform analyses with sea water. The distance between the major pollution source in the bay (the Gandeok Stream) and the station with the worst bacteriological water quality immediately after 15 mm of rainfall, which was below the Korean standard, was 0.8 km in a straight line; this distance increased to 2.0 km after a period of 24 hours. The area impacted by inland pollution sources after a 15 mm rainfall event was wider than after a 21 mm rainfall. Although the flow rate from inland pollution sources was higher, the concentration of fecal coliform in the discharged water was lower after higher rainfall events. These observations corresponded with the results of fecal coliform analyses with sea water samples. According to the evaluation of the influences of inland pollution sources and fecal coliform analyses on sea water and shellfish samples in Geoje Bay, pollutants from inland sources did not reach the boundary line of the shellfish growing area after rainfall events of 15 or 22 mm. The bacteriological water quality of the shellfish growing area in Geoje Bay met the Korean standard and US NSSP requirements for approved shellfish growing areas.

A study on the variation of design flood due to climate change in the ungauged urban catchment (기후변화에 따른 미계측 도시유역의 확률홍수량 변화에 관한 연구)

  • Hwang, Jeongyoon;Ahn, Jeonghwan;Jeong, Changsam;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.395-404
    • /
    • 2018
  • This research evaluated the change in rainfall quantile during S1, S2, and S3 by using Representative Concentration Pathways (RCP) 4.5 climate scenario HadGEM3-RA Regional Climate Model (RCM) produced by downscaling and bias correlation compared to the past standard observation data S0. Also, the maximum flood peak volume and flood area were calculated by using the urban runoff model and the impact of climate change was analyzed in each period. For this purpose, Gumbel distribution was used as an appropriate model based on the method of maximum likelihood. As a result, in the case of the 10 year-frequency which is the design of most urban drainage facilities, the rainfall quantile is in increased about 10% if we assume 50 years from now with the $3^{rd}$ quarter value and about 20% if we assume 70 years from now. This result implies that the installed urban drainage facility based on the currently set design flood volume cannot be met the design criteria in the future. Therefore, it is necessary to reflect future climate conditions to current urban drainage facilities.

Women and Poverty in Korea: the Feminization of Poverty? (한국의 빈곤의 여성화에 대한 실증 분석)

  • Seok, Jae-Eun
    • Korean Journal of Social Welfare
    • /
    • v.56 no.2
    • /
    • pp.167-194
    • /
    • 2004
  • This paper examine the gender-poverty gap and the feminization of poverty in Korea with using data from the National Survey Household Income & Expenditure(1996, 2000) and the Urban Survey Household Income & Expenditure(1996-2002) by Korea National Statistical Office. The poverty rate in 2000 was 16.9 percent for female-head families and 7.9 percent for male-head families, which means that female-head families were 2.6 times more likely to be poor than male-head families. With examining impact of economic crisis in 1998 on gender-poverty gap, it show that both the poverty rate of female-head and male-head increase radically in peak of economic crisis, while, in the stage of recovering economy, the poverty rate of male-head families recovered mostly the level before economic crisis, but that of female-head families recover only the 2/3 level before and the 1/3 remain still under poverty. Thus gender-poverty gap appeared bigger during passing through economic crisis. With analyzing on influence factors of poverty, it appear that poverty is influenced by gender itself as well as education level, working condition which is reflected substantially characteristics of gender. Such an analysis results mean that the considering gender dimension is necessary to resolve poverty fundamentally because gender is a point intersection among family, labour market, and social security. Therefore it appears certain that to develop and adopt of women-friendly social policy is effective approach, which could resolve poverty and social problems related to social rights.

  • PDF

Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites (목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성)

  • Son, Jungil;Gardner, Douglas J.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The main goal of this study was to analyze the effect of process additives, i.e. maleated polypropylene (MAPP), and nucleating agent on the viscoelastic properties of different types of extruded polypropylene-wood plastic composites manufactured from either PP homopolymer, high crystallinity PP or PP impact copolymer using dynamic mechanical thermal analysis. And also, the esterification reaction between wood flour and maleated polypropylene, and its role in determining the mechanical properties of wood flour-polypropylene composites was investigated. The wood plastic composites were manufactured using 60% pine wood flour and 40% polypropylene on a Davis-Standard $Woodtruder^{TM}$. Dynamic mechanical thermal properties, polymer damping peaks(than ${\delta}$), storage modulus (E') and loss modulus (E") were measured using a dynamic mechanical thermal analyzer. XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis) study of wood flour treated with MAPP was performed to obtain information on the chemical nature of wood fiber before and after treatment. To analyze the effect of frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of -20 to $100^{\circ}C$, at four different frequencies (1, 5, 10 and 25 Hz), and at a heating rate of $5^{\circ}C/min$. From these results, the activation energy of the various composite was measured using an Arrhenius relationship to investigate the effect of maleated PP and nucleating agent on the measurement of the interphase between the wood and plastic of the extruded polypropylene wood plastic composites.

  • PDF

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT (SWAT을 이용한 기후변화의 수문학적 영향평가를 위한 Proxy-basin Differential Split-Sampling 및 Blind-Validation 테스트 적용)

  • Son, Kyong-Ho;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.969-982
    • /
    • 2008
  • As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins.

Impact of Xanthan-locust Bean Gum Mixtures on Pasting/Paste Characteristics and Freeze-thaw Stabilities of Waxy Rice Starch (찹쌀 전분의 페이스팅/페이스트 특성 및 냉해동 안정성에 대한 잔탄검-로커스트콩검 혼합물의 영향)

  • Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.593-600
    • /
    • 2014
  • Normal rice starch (NRS) possesses high gelling and retrogradation tendencies, with poor freeze-thaw stability. This study investigated the effects of partial replacement of waxy rice starch (WRS) with gums on the pasting and viscoelastic properties as well as the freeze-thaw stability of the WRS paste. Xanthan gum (XAT), locust bean gum (LBG), and their mixtures were individually mixed with WRS at a ratio of 1:19 (w/w). WRS-gum mixtures were pasted using a rapid visco-analyzer at 5% total solid content, and analyzed with respect to the pasting and viscoelastic characteristics, and freeze-thaw stability. Pasting properties of WRS were retarded in pasting temperature and enhanced in pasting viscosity (although peak viscosity was varied) by partial replacement with gum and gum mixtures. Storage moduli of WRS-XAT:LBG pastes became similar to those of NRS paste with increasing angular frequency from 1 to 10 rad/s. Finally, WRS-XAT and WRS-XAT:LBG possessed more enhanced freeze-thaw stability than NRS.

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

Identifying Yellow Sand from the Ocean Color Sensor SeaWIFS Measurements (해색 센서 SeaWiFS 관측을 이용한 황사 판독)

  • 손병주;황석규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.366-375
    • /
    • 1998
  • Optical characteristics of the yellow sand and their influences on the ocean color remote sensing has been studied using ocean color sensor SeaWiFS measurements. Two cases of April 18 and April 25, 1998, representing yellow sand and background aerosol, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. Optical thickness of yellow sand arrived over the East Asian sea waters in April 18 indicates that there are two groups loaded with relatively homogeneous yellow sand, i.e.: heavy yellow sand area with optical thickness peak around 0.8 and mild area with about 0.4, which are consistent with ground observations. The movement of the yellow sand area obtained from surface weather maps and backward trajectory analysis manifest the notion that the weak yellow sand area was originated from the outer region of the dust storm. It is also noted that high optical thickness associated with the yellow sand is significantly different from what we may observe from background aerosol, which is about 0.2. These characteristics allow us to determine the yellow sand area with an aid of atmospheric correction parameter. Results indicate that the yellow sand area can be determined by applying the features revealed in scattergrams of atmospheric correction parameter and optical thickness.

A Study on Improvement of Hydrologic Cycle by Selection of LID Technology Application Area -in Oncheon Stream Basin- (LID 기술 적용 지역 선정에 따른 물순환 개선 연구 -온천천 유역을 대상으로-)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.545-553
    • /
    • 2021
  • The frequency by water disaster in urban areas are increasing continuously due to climate change and urbanization. Countermeasures are being conducted to reduce the damage caused by water disasters. An analysis based on permeability, one of the parameters that affect runoff, is needed to predict quantitative runoff in urban watersheds and study runoff reduction. In this study, the SWAT model was simulated for the oncheon stream basin, a representative urban stream in Busan. The permeability map was prepared by calculating the CN values for each hydrologic response unit. Based on the permeability map prepared, EPA SWMM analyzed the effect of LID technology application on the water cycle in the basin for short-term rainfall events. The LID element technology applied to the oncheon stream basin was rooftop greening in the residential complex, and waterproof packaging was installed on the road. The land cover status of the land selected based on the permeability map and the application of LID technology reduced the outflow rate, peak flow rate, and outflow rate and increased the infiltration. Hence, LID technology has a positive effect on the water cycle in an urban basin.