• Title/Summary/Keyword: Peak Impact

Search Result 631, Processing Time 0.026 seconds

Impact of IODM and ENSO on the East Asian Monsoon: Simulations through NCAR Community Atmospheric Model (동아시아 몬순 지역에서 IODM과 ENSO의 영향 : NCAR Community Atmospheric Model을 이용한 모의 실험)

  • Oh J.-H.;Chaudhari H. S.;Kripalani R. H.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.240-249
    • /
    • 2005
  • The normal Indian Ocean is characterized by warmer waters over the eastern region and cooler waters over the western region. Changes in sea surface temperature (SST) over the western and eastern Indian Ocean give birth to a phenomenon now referred to as the Indian Ocean Dipole Mode (IODM). The positive phase of this mode is characterized by positive SST anomalies over the western Indian Ocean and negative anomalies over the southeastern Indian Ocean, while the negative phase is characterized by a reversed SST anomaly pattern. On the other hand, the normal Pacific Ocean has warm (cool) waters over the western (eastern) parts. Positive (negative) SST anomalies over the central/eastern (western) Pacific Ocean characterize the E1 Nino phenomenon. The reverse situation leads to the La Nina phenomenon. The coupled ocean-atmosphere phenomenon over the Pacific is referred to as the E1 Nino Southern Oscillation (ENSO) phenomenon. In this study the impact of IODM and ENSO on the East Asian monsoon variability has been studied using observational data and using the Community Atmospheric Model (CAM) of the National Center for Atmospheric Research (NCAR). Five sets of model experiments were performed with anomalous SST patterns associated with IODM/ENSO superimposed on the climatological SSTs. The empirical and dynamic approaches reveal that it takes about 3-4 seasons fur the peak IODM mode to influence the summer monsoon activity over East Asia. On the other hand, the impact of ENSO on the East Asian monsoon could occur simultaneously. Further, the negative (positive) phase of IODM and E1 Nino (La Nina) over the Pacific enhances (suppresses) monsoon activity over the Korea-Japan Sector. Alternatively, IODM appears to have no significant impact on monsoon variability over China. However, El Nino (La Nina) suppresses (enhances) monsoon activity over China. While the IODM appears to influence the North Pacific subtropical high, ENSO appears to influence the Aleutian low over the northwest Pacific. Thus, the moisture supply towards East Asia from the Pacific is determined by the strengthening/weakening of the subtropical high and the Aleutian low.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

Lower Limbs Muscle Comparative Research for Verification Effect of Rehabilitation Training Program of Total Hip Arthroplasty (재활운동 프로그램에 참가한 엉덩인공관절 수술자의 하지근력 변화에 대한 비교연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.543-548
    • /
    • 2010
  • The purpose of this study was to examine the differences in kinetics between 6 months of rehabilitation training and 12 months of rehabilitation training after total hip arthroplasty. 10 unilateral THA participants performed kinetic tests. Three dimensional kinematics and hip flexors and abductors electromyography (EMG) were collected during each trial. T-test was used for statistical analysis (p<0.05). There was no significant difference in EMG data between the two groups, but the mean comparison EMG data was higher in the 12 months rehabilitation training group than the 6 months rehabilitation training group. The moment value was found with motion-dependent interaction analyzing method which was used by Feltner and Dapena. There was no significant difference between moment values of the two groups. There was no significant difference between ground reaction forces of the two groups; however, there were some differences shown in Fz (vertical reaction force) between the two groups ($892{\pm}104\;N$, $820{\pm}87\;N$). The first peak impact force was about 9% lower in the 12 months group compared to the 6 months group. The second peak active force was nearly equal between the two groups. More research is necessary to determine exactly what constitutes optimal rehabilitation training biomechanics for patients with total hip arthroplasty.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Experiment and Analysis for the Horizontal Vibration Control of Access Floor on Reinforced Concrete Structures (철근 콘크리트 구조물의 Access Floor 수평진동 제어를 위한 실험 및 해석)

  • 변근주;김문겸;송하원;이호범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1997
  • This paper is on the vibration control of access floor on the frames of reinforced structure. In this study, the horizontal anti-vibration system using precise spring damper was developed and modeling and vibration analysis of the RC structure was performed for the control of horizontal vibration coused by machinery and worker's moving. Experiment was done in three cases, no damper at the RC structures, dampers connecting pedestal to pedestal and pedestal to the structure, for the investigation of the effect of the system on disigned RC structure. For each experiment, the occeleration responses on slab and access floor after giving impact wave and external vibration were measured. It was shown that the magnitude of resonance response of the system with dampers are smaller than without damper and the resonance peak also partly moved to low-frequency range. Furthermore. It was shown that the acceleration components of the system with domoers decreased greatly in high-frequency range and the system was very much effective especially for external vibration. In order to verify the anti-vibration effect of the developed system, the vibration analysis was also done for the system by using the finite element modelling. The analysis results was in good agreement with experimental results. Thus, It is concluded that this study is useful for the design of precise anti-vibration system and micro-vibration control of concrete structures.

  • PDF

Developmnet of Vibration and Impact Noise Damping Wood-based Composites (II) -The Influence of the Degree of Crosslinking on the Damping Properties of Interpenetrating Polymer Networks- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(II) -가교밀도가 상호침투망목고분자의 진동흡수성능에 미치는 영향-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 1998
  • In the search for broadband damping composites, it is desirable to have polymers with a broad and high loss region, covering the entire temperature and frequency range of interest. Interpenetrating polymer networks, IPN's, are materials composed of two or more crosslinked polymers intimately and irrevocably interwinded. The resulting distribution of microenviron-ments can result in a materials with a high mechanical loss broad end over that of either polymer component alone. In this study, several series of copolymer, crosslinked copolymer and copolymer/copolymer IPN's were synthesized for possible use as broadband damping materials. Then their dynamic tensile properties were measured and compared with the damping properties of sandwich composites. Dynamic mechanical analysis showed that the temperature of loss peak may be varied over a wide temperature range with formulation. The compatibility of IPN`s was depended on the compatibility of A and B polymers as well as crosslink density. The damping factor(tan ${\delta}_c$) of composites became greater when a polymer of approximate storage module(E`) range of 5X10$^7$ to 10$^9$ dyne/cm$^2$ and large tan ${\delta}$ at the same time was used. The damping properities of poly (2-EHA80-co-St20)/poly(2-EHA20-co-St80) IPN`s crosslinked with 3%-DEGDM were relatively better over a broad temperature range.

  • PDF

Biomechanical Evaluation of Trekking Shoes using 3D Bootie Method as Mimics Barefoot Form (맨발 구조를 모사한 3D Bootie 공법을 적용시킨 트레킹화의 생체역학적 특성 평가)

  • Yoo, Chan-Il;Jeon, Keun-Hwan;Won, Yonggwan;Kim, Jung-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4689-4696
    • /
    • 2015
  • The purpose of this study was to evaluate biomechanical characteristics of trekking shoes using 3D Bootie method as mimics barefoot form of F Co. that provides the best comfort and plantar pressure dispersion. The control group is normal trekking shoes of M Co. and K Co.. 13 healthy males measured the foot pressure, EMG and GRF. Collected data was analyzed using One-way ANOVA in order to investigate the effects of each trekking shoes. The results are as follows: Trekking shoe of F Co. was significantly wider in contact area than others at MF and significantly lower in maximum force, peak pressure than others at RF. In the case of muscle activity, acted in the same way as the effect of barefoot walking. In the case of GRF, effectively absorbed the impact force, so it is possible to efficient walking. As a result of the analysis, trekking shoe using of 3D Bootie method of F Co. can be efficient walking by reducing the load of foot during walking.

Uniform Hazard Spectra of 5 Major Cities in Korea (국내 5개 주요 도시에 대한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Wee, Soung-Hoon;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.162-172
    • /
    • 2016
  • Since the Northridge earthquake in 1994 and the Kobe earthquake in 1995 occurred, the concept of performance based design has been introduced for designing various kinds of important structures and buildings. Uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level of each structure, are required for performance-based design. The probabilistic seismic hazard analysis was performed using spectral ground motion prediction equations, which were developed from both Korean Peninsula and Central and Eastern US region, and several seismotectonic models suggested by 10 expert panel members in seismology and tectonics. The uniform hazard spectra for 5 highly populated cities in Korea, with recurrence period of 500, 1,000, and 2,500 years using the seismic hazard at the frequencies of 0.5, 1.0, 2.0, 5.0, 10.0 Hz and Peak ground acceleration (PGA) were analyzed using the probabilistic seismic hazard analysis. The sensitivity analysis suggests that spectral ground motion prediction equations impact much more on seismic hazard than what seismotectonic models do. The uniform hazard spectra commonly showed a maximum hazard at the frequency of 10 Hz and also showed the similar shape characteristics to the previous study and related technical guides to nuclear facilities.

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.