• Title/Summary/Keyword: Peak Discharge

Search Result 624, Processing Time 0.027 seconds

Parameters Estimation of Clark Model based on Width Function (폭 함수를 기반으로 한 Clark 모형의 매개변수 추정)

  • Park, Sang Hyun;Kim, Joo-Cheol;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.597-611
    • /
    • 2013
  • This paper presents the methodology for construction of time-area curve via the width function and thereby rational estimation of time of concentration and storage coefficient of Clark model within the framework of method of moments. To this end time-area curve is built by rescaling the grid-based width function under the assumption of pure translation and then the analytical expressions for two parameters of Clark model are proposed in terms of method of moments. The methodology in this study based on the analytical expressions mentioned before is compared with both (1) the traditional optimization method of Clark model provided by HEC-1 in which the symmetric time-area curve is used and the difference between observed and simulated hydrographs is minimized (2) and the same optimization method but replacing time-area curve with rescaled width function in respect of peak discharge and time to peak of simulated direct runoff hydrographs and their efficiency coefficient relative to the observed ones. The following points are worth of emphasizing: (1) The optimization method by HEC-1 with rescaled width function among others results in the parameters well reflecting the observed runoff hydrograph with respect to peak discharge coordinates and coefficient of efficiency; (2) For the better application of Clark model it is recommended to use the time-area curve capable of accounting for irregular drainage structure of a river basin such as rescaled width function instead of symmetric time-area curve by HEC-1; (3) Moment-based methodology with rescaled width function developed in this study also gives rise to satisfactory simulation results in terms of peak discharge coordinates and coefficient of efficiency. Especially the mean velocities estimated from this method, characterizing the translation effect of time-area curve, are well consistent with the field surveying results for the points of interest in this study; (4) It is confirmed that the moment-based methodology could be an effective tool for quantitative assessment of translation and storage effects of natural river basin; (5) The runoff hydrographs simulated by the moment-based methodology tend to be more right skewed relative to the observed ones and have lower peaks. It is inferred that this is due to consideration of only one mean velocity in the parameter estimation. Further research is required to combine the hydrodynamic heterogeneity between hillslope and channel network into the construction of time-area curve.

Impact of BMP Allocation on Discharge and Avoided Costs in an Urbanized Watershed (최적관리기법 위치분배에 의한 유역단위 하천유량과 회피비용 변화에 관한 연구)

  • Kang, Sang-Jun
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.83-107
    • /
    • 2010
  • Urbanized environments are constructed to estimate peak flow and cost savings in response to possible BMP allocation at a watershed scale. The main goal is to explore the proper allocation of sub-watershed level BMPs for peak flow attenuation at a watershed scale. Since several individual site scale BMPs work as a form of aggregated BMPs at a sub-watershed scale, it is a question as to how to properly allocate the sub-watershed level BMPs at a watershed scale. The Hydrological Simulation Program-FORTRAN (HSPF) is set up for a hypothetically urbanized watershed. A peak flow is determined to be the primary variable of interest and targeted to characterize the spatial distribution of aggregated BMPs. Construction cost of a regional pond forms the basis of the economic valuation. The results indicate that when total size of BMPs is constant in the entire watershed, (1) it is most effective to have aggregated BMPs in some upper sub-watersheds while the BMPs in either the mainstem sub-watershed or a single sub-watershed are the least effective choices for peak flow attenuation at a watershed scale; (2) savings exist between allocation differences and reduced peak flow increases cost savings. The largest saving is found in the strategy of aggregated BMPs in some upper sub-watersheds. These findings, however, call for follow-up site specific case studies revisiting the watershed scale impacts of BMP allocation. Then, it will be argued that location and extent of decentralization are considerable policy variables for an alternative stormwater management policy at a watershed scale.

  • PDF

The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam (사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.409-418
    • /
    • 2019
  • Debris flows occur in mountainous areas due to heavy rains resulting from climate change and result in disasters in the downstream area. The purpose of this study is to estimate the impact force of a debris flow when a check dam according is installed in various locations in the channel of a highly mountainous area. A Finite Differential Element Method (FDM) model was used to simulate the erosion and deposition based on the equation for the mass conservation and momentum conservation while considering the continuity of the fluid. The peak impact force from the debris flow occurred at 0 to 5 sec and 15 to 20 sec. When the supplied water discharge was increased, greater peak impact force was generated at 16 to 19 sec. This means that when increasing the water supply, the velocity of the debris flow became faster, which results in increased energy of the consolidation between the particles of the water and the sediment made. If a number of check dams were to be set up, it would be necessary to investigate the impact force at each location of the check dam. The results of this study could provide useful information in predicting the impact force of the debris flow and in installing the check dams in appropriate locations.

Characterization of Gas Distribution Effect in Inductively Coupled Plasma System (유도결합 플라즈마 시스템의 수치 모델링에서 가스 분배 특성 해석)

  • Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • We have developed a 2D axi-symmetric numerical model for an inductively coupled plasma system in order to analyze gas mixing effect through a narrow gap shower head. For frictional flow, holes of 0.5 mm diameter and 2 mm length are approximately modeled in 2D. Gas velocity distribution 10 mm below the shower head showed 2 times difference between the center and the edge at 10 mTorr. At 10 mm above the wafer, it was increased to 6 times difference due to the pumping duct effect. The model with a 5 mm height buffer region of a shower head showed reasonable behavior of Ar discharge. The density of Ar metastable showed additional peak inside the buffer region around the edge holes.

Characteristics of Surface Roughness Based on Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (I) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (I))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.59-66
    • /
    • 2015
  • The production of high value-added products requires efficient processing and this constant demand for complex shape processing has led to the need for hybrid processing. In this study, the surface characteristics of hybrid machining, which combines wire-cut E.D.M and vibration, are examined. The selected experimental parameters are verticality, waveform, amplitude, peak current and frequency. The experimental results provide a guideline for selecting reasonable machining parameters. Surface roughness was improved by increasing the amplitude of the vibration.

The Stack Design Considering The Reactive Power Supply of Grid-Connected Inverter (계통 연계형 인버터의 무효전력 공급을 고려한 Stack 설계)

  • Koh, Kwang-Soo;Oh, Pil-Kyoung;Kim, Hee-Jung;Kim, Young-Min
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.453-454
    • /
    • 2016
  • The ESS(Energy Storage System) connected with distributed generation is drawing attention due to improving the quality load leveling, peak shaving for enhancing reliability of the power grid. The grid-connected inverter makes frequency adjustment to the active power's charge discharge according to the load variation. In addition, the inverter is possible to act as a reactive power compensation device to eliminate harmonic operates as power factor change inhibiting, anti-transient voltage fluctuation, active filter. In this paper, we propose a design method of igbt stack considering the reactive power supply capacity to improve the quality and reliability of the inverter. Moreover, the grid-connected inverter considering the four-quadrant rated operation designed stack and verified the feasibility of the design through a thermal analysis.

  • PDF

Evaluation on MUSLE Runoff Energy Coefficient in Small Forest Watershed (산림소유역에서 MUSLE 유출에너지인자 계수값의 적용성 평가)

  • Kim, Jaehoon;Choi, Hyung Tae;Lim, Hong-geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.191-200
    • /
    • 2015
  • This study was carried out to investigate coefficient and exponent of runoff energy in MUSLE for small forest watershed, Hwachoen watershed in Gangwon-do. For 15 rainfall events, runoff volume, peak discharge and sediment yield were measured and these data were used to calculate coefficient and exponent of runoff energy. The results of this study showed that $LS{\bullet}K{\bullet}C{\bullet}P$ factors of MUSLE were affected by slope steepness. The coefficient and exponent of runoff energy were validated with coefficient of efficiency of 0.92 and these values were suggested to 0.002 and 0.81 respectively. The comparison of the coefficients and exponents between Hwacheon and other forest watersheds showed that these values would reflect the effect of forest management within watershed.

Analysis of LOFT LP-02-6 Experiment Using RELAP5/MOD3.2

  • Park, Tong-Soo;Lee, Jae-Hoon;Park, Byung-Suh;Cho, Chang-Sok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.357-362
    • /
    • 1996
  • LOFT LBLOCA test, LP-02-6 was analyzed using RELAP5/MOD3.2. It has a distinguished thermal-hydraulic phenomenon of a positive bottom-up core flow in tile blowdown phase. A modified nodalization which is based on that used in LP-LB-1 calculation by Lubbesmeyer was used in the calculation. RELAP5/MOD3.2 predicted overall system hydraulic behavior relatively well. However, the bottom-up quenching in the middle part of the core was not predicted sufficiently. It was demonstrated also that the peak cladding temperature can be predicted well by adjusting a discharge coefficient. But more improvements are needed in order to apply this code to actual plants with less user dependency.

  • PDF

A Study on NOx Removal by Using Plasma Discharge (플라즈마 방전을 이용한 NOx 제거에 관한 연구)

  • 김동욱;정영식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.78-83
    • /
    • 1999
  • This work is the experimental study for NO and NOx removal by utilizing non-thermal plasma. To apply to moving pollution source such as diesel automobile, we suggested the metal packed-helical wire reactor(MPHW) and measured properties of MPHW by varying the peak voltage, frequency, NOx concentration and flow rate for simulated NOx gas balanced with $N_2$. And then we compared these results with the results of cylinder-wire(CW) which was one of popularly used reactor in nonthermal plasma applications. The results of MPHW show fairly good NO and NOx removal rate compare with CW around above 20%. However. the power consumption of MPHW is larger than that of CW as much as around 2.5Watt in all range.

  • PDF

Flood Analysis by Unsteady Flow on Tidal River Estuary (부정류에 의한 감조하천의 홍수분석)

  • 김현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.81-88
    • /
    • 1990
  • The flow in a river reach where is influenced by tidal motion is characterized by unsteady flow. The flood analysis in the river reach needs depending upon the theory based on the complete unsteady flow equations. In this study the unsteady flow model which is called CRIUM (Channel Routing by Implicit Unsteady Flow Model) was developed and was applied to the Mankyong and Dongjin river in order to analyze the flood characteristics. The results, which were calibrated and verified by the flood records to be measured in the two rivers, show that unsteady flow mode] can be used for the derivation of the flood hydrograph. The peak flood discharges were estimated as 4,960 and $2,870m^3$/sec in 100 year frequency at the estuary of the Mankyong and Dongjin river, respectively. In addition, it was analyzed that the river reaches were not influenced by tidal motion when the discharge magnitude was larger than approximately $3,000m^3$/sec.

  • PDF