• Title/Summary/Keyword: Peak Discharge

Search Result 624, Processing Time 0.029 seconds

Determination of Effective Rainfall and Design Hydrograph in Small River Catchment (중소하천유역에 있어서 유효강우량 및 설계수문곡선의 결정에 관한 연구 - 특히 SCS 방법을 중심으로 -)

  • 김상인;이순택
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.49-55
    • /
    • 1982
  • The purpose of this study is to examine the methods of estimation, comparing U.S. SCS method and $\Phi$-index with effective rainfall. And also comparision was made among SCS method, Chow method and Mockus method as to the peak discharge of design storm hydrograph by small river basin. Hydrological data of the Shin river basin which was used in this study and the results of study are as follow; 1) As a result of applying the SCS method to determine the effective rainfall out of total rainfall, it turned out that the everage CN of the basin as obtained by the analysis of hydrologic soil-cover complex was varied as follows; AMC-I was 27.9%, AMC-II 16.4%, AMC-III 8.1% less than the value given by SC method using discharge measurement. 2) The comparision of effective rainfall by the ungaged SCS method with that of gauged $\Phi$-index method showed that the $\Phi$-index method showed that the $\Phi$-index method gives large value by 4.7% to those given by hydrograph. The result of analysis by the SCS method resulted in great difference from discharge measurement. 3) The comparision of SCS method, Chow method, and Mockus method showed that dimensionless hydrograph of SCS method and Chow method were close to the peak discharge of the gauged unit hydrograph, while the other methods gave far different results. 4) Attempts were made, for a better adaptation to the Shin river basin, to introduce lag time formula constant of dimensionless hydrograph of the SCS method by using the peak discharge of the gauged flow hydrograph.

  • PDF

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.

Runoff Simulation and Forecasting at Ungaged Station (미계측 지점에서의 유출 모의 및 예측)

  • Ahn, Sang-Jin;Choi, Byong-Man;Yeon, In-Sung;Kwark, Hyun-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.485-494
    • /
    • 2005
  • It is very important to analyze the correlation between discharge and water quality. The observation of discharge and water quality are effective at same point as well as same time for real time management. But no less significant is the fact that there are some of real time water quality monitoring stations far from the T/M water stage. Pyeongchanggang station is one of them. In this case, it need to observe accurate discharge data, and to develop forecasting program or system using real time data. In this paper, discharge on Pyeongchanggang station was calculated by developed runoff neural network model, and compared with discharge using WMS(Watershed Modeling System) model. WMS shows better results when peak discharge is small and hydrograph is smooth. Forecasted discharge of neural network model have achieved the highest overall accuracy of specific discharge and WMS. Neural network model forecast change of discharge well on unrecored station.

A Study on the Peak Discharge and Soil Loss Variation due to the New Town Development - In the Case of Namak New Town Development Area - (신도시 개발에 따른 첨두유출량과 토양유실량 변화에 관한 연구 -목포시 남악 신도시 개발지를 대상으로-)

  • Woo, Chang-Ho;Cho, Nam-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2002
  • The purpose of this study is to explore the hydrological impacts and soil loss variation due to the land use change of Namak New Town development area. The analysis of hydrological effects and soil loss variation has been carried out using GIS in this study. In order to estimate the peak runoff volume, the Rational Method which is the most popular technique to predict runoff amounts is used. To estimate the soil loss in the study area, Universal Soil Loss Equation(USLE), which is one of the most comprehensive and useful technique to predict soil erosion is adopted. The result of this study has shown that the peak runoff volume and the total soil loss increase according to the land use change. The peak runoff volume and the total soil loss have been increased about 2 times and about 48 times more than that of pre development. The increasing of the peak runoff volume can be effective erosion, flooding and so on. A careful city planning is the first essential step to minimize the environmental impacts and to construct the ecological city.

A Study on the Technology Measuring Partial Discharge for Long Term Aging Experiments of Insulation Materials (장시간 절연체 열화실험을 위한 부분방전측정기술 연구)

  • Seon, Jong-Ho;Kim, Gwang-Hwa;Park, Jeong-Hu;Jo, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.665-672
    • /
    • 2000
  • This paper described the measurement technology to analyze the partial discharge characteristics for long term aging of insulations. This system was consisted of high voltage generation and measurement part, PD detection part, digital conversion and signal processing part. We used the VXI system for digital conversion and signal processing part. In the digital conversion part, we studied the error of partial discharge magnitude and memory capacity for reading digital signal with the sampling rate. In the signal processing part, we showed the program algorithm to count pulses and read peak values of partial discharge. The allowable minimum sampling rate of digizer was decided to 250kS/s through analyzing test. We confirmed that this system was very useful in the study of $\phi-q-n$ characteristics of long term PD experiments with specimens being consisted of internal void defects and CIGRE II electrodes.

  • PDF

1-Dimensional Simulation of the Corona Discharge using Fluid Method (유체법을 이용한 코로나 방전의 1차원 수치해석)

  • 이용신;심재학;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.172-176
    • /
    • 1997
  • It is likely that the corona discharge appears due to the motion and the multiplication of electron and ion under the nonuniform electric field. Because the motion and the multiplication of electron and ion are the function of electric field, for the simulation of the corona discharge, we have to calculate the electric field, before the calculation of the motion and the multiplication of electron and ion. In this paper, the electric field is calculated on the assumption that the gap between a hyperboloidal needle and a plane is 1-dimension, and the motion and the multiplication of electron and ion are determined by Flux-Corrected Transport method. For this purpose, we solve the electron and ion continuity equation together with Poisson equation. We calculated the current density and the electron and ion density distributions between electrodes as well as electric field distortion due to the space charge assuming that the discharge channel radius is 100${\mu}{\textrm}{m}$. In this simulation, it is found that the current density has one peak as observed by experiment, and electric field distortion is important to the formation and the stability of the corona discharge.

  • PDF

Effects of Nitrogen Gas Ratio on Nitride Layer and Microhardness of Tool Steel(SKH51) in Plasma Nitriding (플라즈마질화시 방전가스중 질소가스의 비율이 공구강(SKH51)의 질화층 및 미소경도에 미치는 영향)

  • Kim, Deok-Jae;Lee, Hae-Ryong;Gwak, Jong-Gu;Jeong, U-Chang;Jo, Yeong-Rae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.447-451
    • /
    • 2002
  • Pulsed DC-plasma nitriding has been applied to form nitride layer having only a diffusion layer. The discharge current with the variation of discharge gases is proportional to the intensity of $N_2^+$ peak in optical emission spectroscopy during the plasma nitriding. The discharge current, microhardness in surface of substrate and depth of nitride layer increased with the ratio of $N_2\;to\;H_2$ gas in discharge gases. When the ratio of $N_2\;to\;H_2$ is lower than 60% in the discharge gases, high microhardness value of 1100Hv nitride layer which contains no compound layer has been formed.

The effect of Surface Roughness on Wire-cut Electric Discharge Machining of Discharge Energy in Aluminium Alloy 2024 (알루미늄 합금 2024의 와이어 컷 방전가공에서 방전 에너지가 표면 거칠기에 미치는 영향)

  • Ryu, Cheong-Won;Choi, Seong-Dae;Lee, Soon-Kwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.714-719
    • /
    • 2011
  • The surface roughness depending on the machining method is very important because is produce a finished product through riveting, sealing, bonding, and special paint in order to curb the turbulence and air resistance which occur between the sheets. Aluminum alloy 2024 which is widely used for interior and exterior material of aircraft are tested. Jin-young JW-60C wire cutting machine was used in this experiment. In this paper, the experimental investigation has been performed to find out the influence of the surface roughness and surface shape characteristics on the wire-cut EDM of discharge energy in aluminium alloy 2024. The selected experimental parameters are peak current, no-load voltage, off time and feed rate. The experimental results give the guideline for selecting reasonable machining parameters. The high discharge energy on the idle time, almost no change in surface roughness can be seen.

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

A Study on the Electrical Discharge Machining Tap by using Cu Electrodes of the Cold-Work Tool Steel (냉간 금형용 공구강의 Cu 전극을 이용한 방전 탭에 관한 연구)

  • Lee, Eun-Ju;Park, In-Soo;Kim, Hu-Kwon;Wang, Duck-Hyun;Chung, Han-Shik;Lee, Kwang-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.131-136
    • /
    • 2016
  • Currently, an EDM tapping procedure has comprised some parts of the engraving discharge process for the press die. Usually, tapping has been used in cases where we are unable to mechanically machine using steelwork processes due to an increase in the hardness of a material after heat treatment in relation to a design change or missing process. Here, we analyze the influence of discharge tap shape on discharge time, discharge current, and the number of repetition conditions when a cold-work tool steel (STD11) has been treated with a discharge tapped by a screw-shaped cu electrode. The most important influence on processing condition has been determined to be the number of discharge repetitions. As this number increases, the angle reduction of a thread closes to an angle of the electrode via a power generation reduction. The optimal combination of conditions has been determined to be three discharge repetitions, $180{\mu}s$ of discharge time (same as existing regulations), and 25.4A of peak current. A 0.2749db advantage has emerged after comparing between this combination of optimal conditions and the SN rate of existing regulations.