• Title/Summary/Keyword: PdCo alloy

Search Result 46, Processing Time 0.03 seconds

Epitaxial Overlayers vs Alloy Formation at Aluminum-Transition Metal Interfaces

  • Smith, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.29-29
    • /
    • 1999
  • The synthesis of layered structures on the nanometer scale has become essential for continued improvements in the operation of various electronic and magnetic devices. Abrupt metal-metal interfaces are desired for applications ranging from metallization in semiconductor devices to fabrication of magnetoresistive tunnel junctions for read heads on magnetic disk drives. In particular, characterizing the interface structure between various transition metals (TM) and aluminum is desirable. We have used the techniques of MeV ion backscattering and channeling (HEIS), x-ray photoemission (ZPS), x-ray photoelectron diffraction(XPD), low-energy ion scattering (LEIS), and low-energy electron diffraction(LEED), together with computer simulations using embedded atom potentials, to study solid-solid interface structure for thin films of Ni, Fe, Co, Pd, Ti, and Ag on Al(001), Al(110) and Al(111) surfaces. Considerations of lattice matching, surface energies, or compound formation energies alone do not adequately predict our result, We find that those metals with metallic radii smaller than Al(e.g. Ni, Fe, Co, Pd) tend to form alloys at the TM-Al interface, while those atoms with larger atomic radii(e.g. Ti, Ag) form epitaxial overlayers. Thus we are led to consider models in which the strain energy associated with alloy formation becomes a kinetic barrier to alloying. Furthermore, we observe the formation of metastable fcc Ti up to a critical thickness of 5 monolayers on Al(001) and Al(110). For Ag films we observe arbitrarily thick epitaxial growth exceeding 30 monolayers with some Al alloying at the interface, possible driven by interface strain relief. Typical examples of these interface structures will be discussed.

  • PDF

The Characteristics of Hydrogen Permeation through Pd-coated $Nb_{56}Ti_{23}Ni_{21}$ Alloy Membranes (Pd 코팅된 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 수소투과 특성)

  • Jung, Yeong-Min;Jeon, Sung-Il;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • We make a studyof the hydrogen permeability and chemical stability of $Nb_{56}Ti_{23}Ni_{21}$ metal alloy membrane. For this purpose, we produced the $Nb_{56}Ti_{23}Ni_{21}$ membrane which has 10 mm diameter and 0.5 mm thick, and experiment the hydrogen transport properties under two kinds of feed gas ($H_2$ 100%; $H_2$ 60% + $CO_2$ 40%) at $450^{\circ}C$C with variation of absolute pressure.The maximum hydrogen permeation flux was $5.58mL/min/cm^2$ in the absolute pressure 3 bar under pure hydrogen. And each case of feed gases about gas composition, the permeation fluxes were satisfied with Sievert's law, and the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure. After permeation test, we experiment the stability and durability of $Nb_{56}Ti_{23}Ni_{21}$ alloy membrane for carbon dioxide by XRD analysis.

A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating (무전해 도금에서 Sn 민감화와 Pd 활성화 공정의 세척 효과에 대한 연구)

  • Seong-Jae, Jeong;Mi-Se, Chang;Jae-Won, Jeong;Sang-Sun, Yang;Young-Tae, Kwon
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.511-516
    • /
    • 2022
  • Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.

Evaluation of image quality for metal artifact using protocol parameters in the MRI (자기공명영상에서 프로토콜 변화를 이용한 금속인공물의 영상평가)

  • Lee, Su-Hyun;Kim, Do-Gyoung;Kim, Yo-Han;Yeum, Hyei-Jeong;Lee, Heon-Jun;Lim, Ju-Yeon;Choi, Woo-Jeon;Kim, Dong-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.582-585
    • /
    • 2015
  • In the aging society, TKRA is steadily increased because of joint diseases. Artificial joint used in TKRA generates metal artifacts in the MRI. Metal artifact may affect diagnosis. In study, We are going to minimize the effect of metal artifact to improve the value of diagnosis by changing the sequence and the type of artificial joint(Co-Cr, Ni-Ti). 1.5T AVANTO, plastic containers and each of the artificial joint (Normal, Co-Cr, NiTi) were used. After the artificial joints fixed in a paper cup was inserted in a plastic container of cylindrical, Signal intensity was measured. To obtain strong and uniform signal intensity, the plastic container was filled with water. We changed Sequences(T1 TSE, T2 TSE, PD TSE) and obtained an Axial image. After excepting the maximum and minimum values, We calculated the average of SNR, CNR and PSNR. Consequently, The SNR, CNR value of PD TSE are measured higher than these of T1 TSE, T2 TSE and The PSNR of Co-Cr is higher than this of Ni-Ti. The SNR of Co-Cr is similar to the SNR of normal comparing this of Ni-Ti. As a result, Using sequence of PD Tse and Co-Cr alloy is considered to be useful.

  • PDF

A STUDY ON THE ADHESIVE BOND STRENGTH OF COMPOSITE RESIN TO Au-Ag-Cu-Pd ALLOY (Au-Ag-Cu-Pd합금과 복합레진간의 접착결합강도에 관한 연구)

  • Seol Young-Hoon;Jung Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.378-395
    • /
    • 1994
  • The purpose of this study was to investigate the effect of various metal surface treatments and adhesive systems on the flexural bond strength of composite resin to Au-Ag-Cu-Pd alloy. The specimens were divided into nine groups by the combinations of surface treatment methods and adhesive systems. The types of surface treatment in this study were alumina blasting only, alumina blasting-Sn plating, alumina blasting-heating and three kinds of adhesive system used in this study were Silicoater system(Heraeus Kulzer GmbH,Germany), Superbond C & B(Sun Medical Co.,Ltd.,Japan) and Cesead opaque primer(Kurary Co.,Ltd.,Japan). After surface treatments and adhesive systems were applied, each specimen was built up with Dentacolor composite resin (Heraeus Kulzer GmbH,Germany). Four-point flexural bond strength was measured by Instron universal testing machine (Model 4301,U.S.A.) and modes of failure were observed by SEM(JEOL,SSM-840A,Japan). The obtained results were as follows: 1. The group that was bonded with Superbond C & B after alumina blasting-heating shelved the highest bond strength with significant difference among the groups, except the group with Cesead opaque primer after alumina blasting-Sn plating(P<0.05). 2. In the groups bonded with Cesead opaque primer, there was significant difference only in the bond strength between the alumina blasting-Sn plating group and alumina blasting group, where the former showed a higher bond strength(P<0.05). 3. In the groups bonded with Silicoater system, there were no significant differences in bond strength regardless of the surface treatment method(P<0.05). 4. In SEM evaluation, the groups of high bond strength, especially bonded with Superbond C & B after alumina blasting-heating and Cesead opaque primer after alumina blasting-Sn plating, revealed mainly cohesive-adhesive failure, whereas the others showed the tendency of adhesive failure.

  • PDF

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.

Partial Oxidation of Methane in Palladium-silver Alloy Membrane Reactor (팔라듐-은 막반응기를 이용한 메탄의 부분산화반응)

  • Choi, Tae-Ho;Kim, Kwang-Je;Moon, Sang-Jin;Suh, Jung-Chul;Baek, Young-Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.641-647
    • /
    • 2005
  • The partial oxidation of methane is one of important processes for hydrogen production. As a membrane reactor, palladium-silver (Pd-Ag) alloy membrane prepared by electroless plating technique was employed for partial oxidation of methane. The experimental variables were reaction temperature, $O_2/CH_4$ mole ratio, $CH_4$ feed rate, and $N_2$ sweep gas flow rate. The methane conversions increased with the reaction temperatures in the range of 350 to $730^{\circ}C$. The highest methane conversion and CO selectivity were obtained at the condition of $O_2/CH_4$ mole ratio of 0.5 and $730^{\circ}C$ using commercially available nickel/alumina catalyst. The Pd-Ag membrane reactor showed higher methane conversions, 10~40% higher, compared to those in a traditional reactor.

Fabrication of Bulk Metallic Glass Alloys by Warm Processing of Amorphous Powders (비정질 분말의 열간 성형법에 의한 벌크 비정질합금의 제조)

  • 이민하;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.193-201
    • /
    • 2004
  • 1960년 Au-Si계 합금에서 처음으로 비정질상이 급속 응고법에 의해 보고된 이래/sup 1)/ 지난 40년 간 많은 합금계에서 비정질상이 보고되어졌다. 대표적으로 Fe-, Ni-, Co기 합금 등 많은 합금계에서 비정질상이 보고되었으나, 비정질상의 형성을 위해서는 약 105 K/s이상의 높은 냉각속도를 필요로 하였다. 1980년대 수백 K/s의 낮은 냉각속도 하에서도 비정질상이 형성될 수 있는 다원계 합금(multi-component alloy)이 Mg-Ln-(Ni, Cu, Zn), Ln-Al-TM 합금에서 보고되어 졌으나 많은 관심을 받지 못하다가 1993년 Zr-Ti-Ni-Cu-Be 합금에서 수 ㎝ 크기의 비정질합금 제조가 보고되면서 전 세계적으로 많은 관심을 받게 되었다. Zr-Ti-Ni-Cu-Be계 벌크 비정질 합금이 보고된 후 Zr-(Nb,Pd)-Al-TM, Pd-Cu-Ni-P, Fe-Co-Zr-Mo-W-B, Ti-Zr-Ni-Cu-Sn등 여러 합금계에서 벌크 비정질 합금이 보고되었다. (중략)