• Title/Summary/Keyword: Pd Catalyst

Search Result 284, Processing Time 0.029 seconds

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF

Pd-doped $SnO_2$-based oxide semiconductor thick-film gas sensors prepared by three different catalyst-addition processes

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Three different procedures for adding Pd compounds to $SnO_2$ particles have been investigated. These processes are: (1) coprecipitation; (2) dried powder impregnation; and (3) calcined powder impregnation. The microstructures of $SnO_2$ particles have been analyzed by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). In the coprecipitaion method, the process does not restrain the growth of $SnO_2$ particles and it forms huge agglomerates. In the dried powder impregnation method, the process restrains the growth of $SnO_2$ particles and the surfaces of the agglomerates have many minute pores. In the calcined powder impregnation method, the process restrains the growth of $SnO_2$ particles further and the agglomerates have a lot more minute pores. The sensitivity ($S=R_{air}/R_{gas}$) of the $SnO_2$ gas sensor made by the calcined powder impregnation process shows the highest value (S = 21.5 at 5350 ppm of $C_3H_8$) and the sensor also indicates the lowest operating temperature of around $410^{\circ}C$. It is believed that the best result is caused by the plenty of minute pores at the surface of the microstructure and by the catalyst Pd that is dispersed at the surface rather than the inside of the agglomerate. Schematic models of Pd distribution in and on the three different $SnO_2$ particles are presented.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

The Study of Toluene Combustion over Palladium-copper/USY Zeolite Catalyst (Pd-Cu/USY 제올라이트상에서 톨루엔 연소반응 연구)

  • Lee, Hye Young;Jin, Taihuan;Hwang, Young Kyu;Chang, Jong-San;Hwang, Jin-Soo;Lee, Chang-Gook;Baek, Shin;Ra, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.404-409
    • /
    • 2006
  • The catalytic combustion of toluene over Pd-Cu/USY zeolite has been examined by using FT-IR spectroscopy in a closed system under dry and humid conditions. The catalytic combustion of toluene (700 ppmv) in the temperature range of $80-220^{\circ}C$ has been investigated by using a fixed bed reactor. The Pd-Cu/USY catalyst showed the highest catalytic performance with respects to the PdO-CuO/USY and Pd/USY. Comparing to $PdO/Al_2O_3$ catalysts, the slight improvement in conversion was observed over PdO/USY catalysts under humid condition since USY zeolite is hydrophobic substrate and water give an additional oxygen source to zeolite surface like oxygen. The reduced catalysts showed more enhanced catalytic activity due to the reduced activation energy of combustion of toluene than oxidized catalysts such as PdO/USY and PdO-CuO/USY.

The Geometric Effect in Pd Assisted Ni-MILC (Pd에 의해 결정화 속도가 향상된 Ni-MILC에서 기하학적 형상이 결정화 속도에 미치는 영향)

  • Kim Young-Su;Joo Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.500-504
    • /
    • 2004
  • It is well-known that adjacent Pd-MILC enhanced the rate of Ni-MILC. And the phenomena can be explained by tensile stress propagation between amorphous silicon and Pd silicide which is catalyst of crystallization. In this study, we modified tensile stress by changing geometry of amorphous silicon to prove that there is a direct relation between tensile stress and Ni-MILC rate enhancement. When the tensile stress concentrated, the Ni-MILC rate was enhanced more(14.5 ${\mu}m/hr$) by Pd-MILC while the conventional Pd-MILC enhanced Ni-MILC rate was 11 ${\mu}m/hr$. As the result we can be sure that the tensile stress causes the enhancement of Ni-MILC rate.

A study on the characteristic in DFAFC using Pt-Pd catalyst (Pt-Pd 촉매를 사용한 직접 개미산 연료전지의 특성 조사)

  • Yu, Jae-Keun;Lee, Hyo-Song;Kim, Jin-Yong;Rhee, Young-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.643-646
    • /
    • 2005
  • 직접 메탄올 연료전지는 휴대용기기의 전원으로써 기대되고 있다. 그러나 메탄올의 crossover, 느린 산화반응과 같은 몇 가지 해결해야 할 문제점을 갖고 있다. 이에 메탄올을 대체할 연로로서 이론적으로 높은 기전력 (1.45 V)을 갖는 개미산이 제안되었다. 본 연구에서는 직접 개미산 연료전지에 대한 이전 연구를 바탕으로 개미산 연료전지에 우수한 성능을 나타내는 촉매를 개발하고자 하였다. 기존의 연구에서 Pt-Pd/C 촉매가 개미산에 대해 우수한 산화반응을 보이며 높은 OCP를 나타내어, 본 연구에서는 deposition method을 이용하여 Pt-Pd 촉매를 제조한 후 그 특성을 조사하였다. Pt-Pd 촉매는 이전의 연구에서 우수한 성능을 나타낸 Pt-Pd 촉매보다 상온에서 2배 이상의 우수한 성능을 나타내었다.

  • PDF

Selective Oxidation of Cyclohexane at Low Temperature by Fe-Pd Bicatalytic Systems: $FeCl_2$-Pd/alumina System and Pd/$Fe_2O_3$ System

  • 전기원;Lingaiah Nakka;김상범;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1269-1273
    • /
    • 1997
  • The system which employs iron, palladium, molecular oxygen and hydrogen as a model mono-oxygenase, has been investigated to develop a new method for selective cyclohexane oxidation uner mild conditions. This system provides much higher yield and selectivity for the formation of cyclohexanol and cyclohexanone compared to that of the existing industrial method. When the catalytic system, FeCl2-Pd/alumina, was employed, the oxidation system required acetone as a solvent to be efficient and acidifying the solvent by a little addition of acetic acid or HCl made the system more efficient. The Pd catalyst was recyclable without a significant deactivation but the recycling of ferrous chloride showed the decrease in the activity. On the other hand, the heterogeneous catalytic system, Pd/Fe2O3 could be recovered easily and reused after drying treatment.

Development of a low NOx burner with honeycomb catalyst (저NOx형 하니컴 촉매버너의 개발)

  • Seo,Yong-Seok;Park, Byeong-Sik;Gang, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.822-829
    • /
    • 1997
  • A catalytic burner was studied which can be used as a heater operated in medium temperature. Noble metal catalysts (Pd/NiO) were used, which were supported on alumina wash coated honeycomb. The maximum heat-resisting temperature of the catalyst is about 900.deg. C. Combustion efficiency of the catalytic burner reached more than 99.5 % at the excess air ratio above 1.25.NOx emissions were lower than 1.0 ppm at all operation conditions. The operation condition for a stable catalytic combustion was obtained. It was dependent on the catalyst thickness. The 30 mm thick catalyst showed the widest stable catalytic combustion region. Stable catalytic combustion region of 30 mm thick catalyst was the operation condition of excess air ratio 1.25 - 1.75 and heat flux 7 - 14 kcal/h center dot cm$^{2}$.

Improvement of $\lambda$--window Range of the Three-Way Catalyst for Natural Gas Vehicles (천연가스 자동차용 삼원촉매의 $\lambda$-윈도우 영역 개선)

  • 최병철;정필수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.92-100
    • /
    • 2000
  • The model gas reaction tests were carried out to investigate the purification characteristics of methane on the exclusive catalyst for NGV. The experiment was conducted with the factors which affect the conversion efficiency of methane, such as Redox ratio, coexistence components of CO, MO, $H_2$O, precious metals and additives. The catalyst loaded with larger amount of pd and with additive La showed lower light-off temperature. In the presence of CO and NO, the conversion efficiency of methane was varied according to the kind of additive loaded. The conversion efficiency of methane was dropped for the catalyst loaded with La under lean air-fuel ratio, while it increased for the one loaded with Ti+Zr for the same condition. It was shown that the water vapor inhibited methane from oxidation by its poisoning on the surface of catalyst.

  • PDF

THE CATALYTICALLY SUPPORTED COMBUSTOR FOR LEAN MIXTURE (촉매에 의해 안정화된 희박 예혼합기의 연소)

  • Seo, Yong-Seok;Gang, Seong-Gyu;Sin, Hyeon-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.59-67
    • /
    • 1998
  • The aim of this study is to investigate advantages that the catalytically supported combustor can have. For this purpose, the catalytic combustor was prepared which consisted of the catalyst bed and the thermal combustor at the downstream of the catalyst bed. The catalyst bed consisted of two-stage. Pd catalyst was installed in the first stage of the catalyst bed, and Pt catalyst was placed in the second stage. Results showed that the catalytically supported combustion had some advantages. One was that auto-ignition occurred in the thermal combustor. This can give merit that an igniter is not necessary to start flame ignition. Other was that the catalytically supported combustion was stable for lean mixture. When combustion of lean mixture was not supported by surface reaction it became unstable so that big combustion noise was created. Therefore, it is desirable to support flame by catalytic surface reaction to obtain the stable combustion of lean mixture.

  • PDF