• Title/Summary/Keyword: Pd 활성화

Search Result 79, Processing Time 0.026 seconds

Effects of Pd Addition on Electrode properties of Metal Hydride (Pd 첨가가 금속수소화물 전극 특성에 미치는 영향)

  • Choi, Jeon;Lee, Kyung-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate etc. In this work, the electrode properties of $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ alloy and $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ alloy with addition of Pd were investigated. These alloys did not show any change in XRD pattern by Pd addition. As Pd was added as alloy element, the activation behavior was not affected significantly in both $AB_2$ type and $AB_5$ type electrodes and, On charging and discharging in high current density, Discharge capacity with increasing of Pd content was more decreased. But cycle life was showed increasing. Especially the electrode of $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}+0.5wt%$ Pd alloy was not almost decreased discharge capacity for 400cycles.

  • PDF

Hydrogen Absorption Kinetics on Al/Pd Film in the $\alpha$ Phase (Al/Pd 박막의 수소 흡수 동역학[$\alpha$상])

  • Cho, Young-Sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.334-341
    • /
    • 2007
  • Al film(135.5 nm thick) with Pd film(39.6 nm thick) was made by thermal evaporation method. Electrical resistance change by hydrogen absorption and desorption was measured with four point measurement method. Even though Al film(135.5 nm thick) did not absorb any hydrogen at room temperature, Al/Pd film absorbed hydrogen at upto 640 torr pressure. Hydrogen absorption kinetics was monitored by measuring resistance change of the sample in the temperature range from $25^{\circ}C$ to $40^{\circ}C$. Absorption activation energy of Al/Pd film was about 10.7 and 17.7 kcal/mol H for 1st stage and last stage respectively at 1 torr hydrogen pressure. This activation values are bigger than that of Pd film, but are much less than that of Al film. This result indicates there is possibility that Al can be storage material for hydrogen by using Pd film evaporation on it.

The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles (PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성)

  • Lee, Jin-Jae;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.532-538
    • /
    • 2006
  • The carbonization and activation conditions for the PAN-based ACF of various grade were investigated to obtain the optimun activation condition with high surface area. And the surface properties and the absorption performance of toxic gas for terror were examined toward the PAN-ACF with the highest surface area. In the test results the surface area increased with increase of the activation temperature, but decreased with increase of the carbonization temperature. After carbonization condition ($900^{\circ}C$-15min) and activation condition ($900^{\circ}C$-30 min), we got the ACF with the highest surface area of $1204m^2/g$. In the absorption test of iodine and toxic gas for terror, this ACF showed more excellent absorption performance than the existing carbon-based adsorbent. Also, in order to give the function characteristic for a selective absorption, the stable nanoparticles of the Ag, Pt, Cu, Pd were prepared and impregnated on the PAN-based ACF in replacement of the existing method supporting metal catalysis. And were analyzed the surface characteristics and the $SO_{2}$ adsorption characteristics. In the $SO_{2}$ absorption performance test of the PAN-ACF with the impregnated nanoparticles, it wasn't change breakthrough time of Ag, Pt, Cu nanoparticle supported the PAN-ACF comparing with breakthrough time (326 sec) of the non supported PAN-ACF but Pd nanoparticle supported the PAN-ACF achieved excellent $SO_{2}$ absorption performance which has break-through time 925 sec.

Electrical Characteristic Change of Al/Pd Film by Hydrogen Gas (수소 기체에 의한 Al/Pd 박막의 전기 특성 변화)

  • Cho, Young-Sin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • Al film(135.5 nm thick) with Pd film(39.6 nm thick) on the top of it was made by thermal evaporation method. Electrical resistance change due to hydrogen absorption and desorption was measured by four point measurement method. The sample was activated by hydrogen absorption and desorption cycling at room temp. Hydrogen was introduced into the film by increasing hydrogen gas pressure step by step up to 640 torr at room temp. The resistance change ratio was decreased to 12 % with increasing hydrogen pressure in contrast to normal metal behavior. This strange tendency was not understood yet. Further study is needed to find out the mechanism of hydrogen absorption in Al in Al/Pd film.

Low Temperature lateral Crystallization of Amorphous Silicon Films Induced by Ni and Pd. (Ni과 Pd을 이용한 비정질 실리콘의 저온 측면 결정화에 관한 연구)

  • Lee, Byeong-Il;Kim, Gwang-Ho;Jeong, Won-Cheol;Sin, Jin-Uk;An, Pyeong-Su;Ju, Seung-Gi
    • Korean Journal of Materials Research
    • /
    • v.6 no.9
    • /
    • pp.900-904
    • /
    • 1996
  • 비정질 실리콘의 표면에 Ni과 Pd를 형성하여 측면으로의 결정화 속도를 향상시켰다. Ni에 의해 비정질 실리콘이 측면으로 결정화될 때 그 성장 속도는 50$0^{\circ}C$에서 3w$\mu\textrm{m}$/hour였으며 이때의 활성화 에너지는 2.87eV로 나타났다. Pd의 경우는 Pd2Si의 형성에 의해 압축 응력이 유발되어 Pdrks의 간격이 좁을수록 측면으로의 결정화 속도가 증가하였다. Ni과 Pd을 각각 다른 부분에 증착시키고 결정화시키면 Ni에 의해 측면으로 결정화되는 속도가 Ni만으로 결정화시킬 때 보다 약 2배 이상의 측면결정화 속도를 보였다.

  • PDF

A Study on the Combustion Characteristics over Pd/cordierite Catalyst (Pd/cordierite 촉매상에서 메탄의 연소 특성 고찰)

  • Cho, Won-Ihl;Oh, Young-Sam;Park, Dal-Ryung;Baek, Young-Soon;Pang, Hyo-Sun;Mok, Young-Il
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 1997
  • This study aims to investigate the application possibility on natural gas in relation to the catalytic combustion of methane on Pd/cordierite catalyst which is currently used as an automobile converter catalyst. The surface area of the catalyst tested was determined to be about 18.7㎡/g and to keep stable condition in structure at mid-high temperatures. The activation energy for methane combustion reaction was estimated to be 19.2 kcal/mol and a hysterisis on the catalyst activity was observed in terms of the catalyst deactivation as the reaction temperature was varied for the methane combustion. On Pd/cordierite catalyst, The characteristics of methane combustion were studied as functions of space velocity and air/fuel ratios below 700$^{\circ}C$.

  • PDF

Preparation of ZnO Nanorod Grown on the PAN Surface and Its Sulfur Removal Characteristics (PAN 섬유 표면에서 성장하는 ZnO 나노로드의 제조 및 이를 이용한 황화합물 제거 특성)

  • LEE, JAEYOUNG;HAN, KYEONGSIK;JEONG, INSOO;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.243-250
    • /
    • 2018
  • Zinc oxide (ZnO) nanorods were grown on a palladium (Pd) activated polyacrylonitrile (PAN) fiber where Pd activation was carried out in advance by the following dry process: palladium(II) bis(acetylacetonate), $Pd(acac)_2$ was sublimed, penetrated into the surface of PAN fiber and spontaneously reduced to Pd nanoparticles at $180^{\circ}C$ for various times under a nitrogen atmosphere. ZnO nanorod morphology was observed by a scanning electron microscopy (SEM) and the elemental composition was confirmed by energy-dispersive X-ray spectroscopy (EDS). The crystalline structure of ZnO nanorods was analyzed by X-ray diffraction (XRD) analysis showing Wurtzite structure consisting of hexagonal lattice. Sulfur removal characteristics were evaluated.

Electrochemical Oxidation of Hydrogen at Palladium Electrode (팔라디움 전극에서의 전기화학적 수소산화반응)

  • Oh, M.H.;Paik, C.H.;Cho, B.W.;Yun, K.S.;Min, B.C.;Ju, J.B.;Sohn, T.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 1996
  • Electrochemical oxidation of hydrogen on PdOx and Pd electrodes were investigated in aqueous 30% KOH solution at different temperatures and hydrogen concentrations(partial pressures). Anodic reaction by hydrogen on PdOx electrode was mainly due to the oxidation of adsorbed hydrogen at -0.8V~-0.5V(vs. Hg/HgO). For Pd electrode, the anodic reaction was participated by the adsorbed hydrogen on surface, as well as by the metal hydride formed from direct reaction between Pd and hydrogen at -0.5V~0.0V(vs. Hg/HgO). With the increase of hydrogen concentration the charge transfer resistance decreased and the exchange current increased. The transfer coefficient of PdOx and Pd electrodes were found to be 0.78 and 0.72 respectively, which shows the superior reactivity of Pd electrode. The activation energies of PdOx and Pd electrodes decreased with the increase of overpotential and were found to be 23.9~20.3 kJ/mole and 7.2~3.0kJ/mole, respectively.

  • PDF

Thermal Stability and the Effect of Substrate Temperature on the Structural and Magnetic Properties of Pd/Co Multilayer Films (Pd/Co 다층박막의 구조 및 자기적 특성에 미치는 기판온도 및 열적안정성에 관한 연구)

  • 허용철;김상록;이성래;김창수
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.298-304
    • /
    • 1993
  • The effects of the substrate temperature and the Pd underlayer on the structure and the magnetic properties of Pd/Co multilayer films prepared by the thermal evaporation were studied. As the substrate temperature increases up to $150^{\circ}C$, the crystallinity of sublayers, (111) texture and the interface sharpness of Pd/Co multilayers were improved due to the enhanced mobility of adatoms. As results of that, the perpendicular and surface anisotropy energies were increased but the coercivity was decreased because the pinning sites of domain wall decreased due to the grain growth. The grain size of the multilayers increased with Pd underlyer thickness. Thermal degradation was enhanced at above $200^{\circ}C$ due to interdiffusion at the Pd/Co interface. The intensity of the main diffraction peak rapidly decayed in the initial stage of aging and then decreased slowly. The rapid change of the intensity in the initial stage was speculated to be due to the structural relaxation phenomena and the later stage change was due to the interdiffusion. The activation energy for the interdiffusion in Pd4/Co1 multilayers was 14.9 KCal/mole.K.

  • PDF

Kinetics of Ethyl Phenylcarbamate Synthesis by the Oxidative Carbonylation of Aniline (아닐린의 산화적 카르보닐화에 의한 에틸페닐카바메이트의 합성의 속도론적 고찰)

  • Park, Nae-Joung;Park, Jae-Keun
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.710-716
    • /
    • 1992
  • Ethylphenyl carbarmate(EPC) was synthesized by oxidative CO carbonylation of aniline in the presence of transition metal catalysts and alkali metal halide cocatalysts at $120^{\circ}C$ under the pressure of 79atm. Oxygen gas was used for oxidizing agent. Kinetics of the reaction was studied and activation energies with different catalysts were estimated. About 100% conversion to EPC and 95% selectivity was obtained in 5 hour reaction. 5% Pd/C was more effective than 5% Rh/C. Effectiveness of cocatalysts was in the order of KI>KBr>KCl. As the temperature increased from $75^{\circ}C$ to $120^{\circ}C$, the conversion rate increased. The reaction was apparent first order and the activation energies with 5% Pd/C and 5% Rh/C were 5.647 and 5.780 kcal/mol, respectively.

  • PDF