• Title/Summary/Keyword: Pb-free soldering

Search Result 44, Processing Time 0.031 seconds

Fluxless Plasma Soldering with Different Thickness of UBM Layers on Si-Wafer (Si 웨이퍼의 UBM층 도금두께에 따른 무플럭스 플라즈마 솔더링)

  • 문준권;강경인;이재식;정재필;주운홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.373-378
    • /
    • 2003
  • With increasing environmental concerns, application of lead-free solder and fluxless soldering process have been taken attention from the electronic packaging industry. Plasma treatment is one of the soldering methods for the fluxless soldering, and it can prevent environmental pollution cased by flux. On this study fluxless soldering process under $Ar-H_2$plasma using lead free solders such as Sn-3.5 wt%Ag, Sn-3.5 wt%Ag-0.7 wt%Cu and Sn-37%Pb for a reference was investigated. As the plasma reflow has higher soldering temperature than normal air reflow, the effects of UBM(Under Bump Metallization) thickness on the interfacial reaction and bonding strength can be critical. Experimental results showed in case of the thin UBM, Au(20 nm)/Cu(0.3 $\mu\textrm{m}$)/Ni(0.4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), shear strength of the soldered joint was relatively low as 19-27㎫, and it's caused by the crack observed along the bonded interface. The crack was believed to be produced by the exhaustion of the thin UBM-layer due to the excessive reaction with solder under plasma. However, in case of thick UBM, Au(20 nm)/Cu(4 $\mu\textrm{m}$)/Ni(4 $\mu\textrm{m}$)/Al(0.4 $\mu\textrm{m}$), the bonded interface was sound without any crack and shear strength gives 32∼42㎫. Thus, by increasing UBM thickness in this study the shear strength can be improved to 50∼70%. Fluxed reflow soldering under hot air was also carried out for a reference, and the shear strength was 48∼52㎫. Consequently the fluxless soldering with plasma showed around 65∼80% as those of fluxed air reflow, and the possibility of the $Ar-H_2$ plasma reflow was evaluated.

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

Trasient Liquid Phase bonding for Power Semiconductor (전력반도체 패키징을 위한 Transient liquid phase 접합 기술)

  • Roh, Myong-Hoon;Nishikawa, Hiroshi;Jung, Jae Pil;Kim, Wonjoong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, a demand in sustainable green technologies is requiring the lead free bonding for high power module packaging due to the environmental pollution. The Transient-liquid phase (TLP) bonding can be a good alternative to a high Pb-bearing soldering. Basically, TLP bonding is known as the combination of soldering and diffusion bonding. Since the low melting temperature material is fully consumed after TLP bonding, the remelting temperature of joint layer becomes higher than the operating temperature of the power module. Also, TLP bonding is cost-effective process than metal nanopaste bonding such as Ag. In this paper, various TLP bonding techniques for power semiconductor were described.

Activation Energy and Interface Reaction of Sn-40Pb/Cu & Sn-3.0Ag-0.5Cu/Cu (Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 접합부 계면반응 및 활성화에너지)

  • Kim, Whee-Sung;Hong, Won-Sik;Park, Sung-Hun;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.402-407
    • /
    • 2007
  • In electronics manufacturing processes, soldering process has generally been used in surface mounting technology. Because of environmental restriction, lead free solders as like a SnAgCu ternary system are being used widely. After soldering process, the formation and growth of intermetalic compounds(IMCs) are formed in the interface between solder and Cu substrate as follows isothermal temperature and time. In this studies, therefore, we investigated the effects of the Cu substrate thickness on the IMC formation and growth of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu solder joints, respectively. The effect of the Cu thickness in PCB Cu pad and pure Cu plate was analyzed as measuring of thickness of each IMC. After solder was soldered on PCB and Cu plate which have different Cu thickness, we measured the IMC thickness in solder joints respectively. Also we compared with the effectiveness of Cu thickness on the IMC growth. From these results, we calculated the activation energy.

Thermodynamic Issues of Lead-Free Soldering in Electronic Packaging (전자 패키징에 사용되는 무연 솔더에 관한 열역학적 연구)

  • 정상원;김종훈;김현득;이혁모
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.37-42
    • /
    • 2003
  • In soldering of electronic packaging, the research on substituting lead-free solder materials for Pb-Sn alloys has become active due to environmental and health concerns over the use of lead. The reliability of the solder joint is very important in the development of solder materials and it is known that it is related to wettability of the solder over the substrate and microstructural evolution during soldering. It is also highly affected by type and extent of the interfacial reaction between solder and substrate and therefore, it is necessary to understand the interfacial reaction between solder and substrate completely. In order to predict the intermetallic compound (IMC) phase which forms first at the substrate/solder interface during the soldering process, a thermodynamic methodology has been suggested. The activation energy for the nucleation of each IMC phases is represented by a function of the interfacial energy and the driving force for phase formation. From this, it is predicted that the IMC phase with the smallest activation energy forms first. The grain morphology of the IMC at the solder joint is also explained by the calculations which use the energy. The Jackson parameter of the IMC grain with a rough surface is smaller than 2 but it is larger than 2 in the case of faceted grains.

  • PDF

The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders (UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

A Study on the Characteristic of Pb-free Sn-Ag-Bi-Ga Solder Alloys (무연 Sn-Ag-Bi-Ga계 솔더의 특성에 관한 연구)

  • 노보인;이보영
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.42-47
    • /
    • 2000
  • The object of this study is to estimate Sn-Ag-Bi-Ga solder alloy as a substitute for Sn-37Pb alloy. For Sn-Ag-Bi-Ga alloys, Ag, Bi and Ga contents are varied. (Ag : 1~5%, Ga : 3%, Bi : 3~6%) Comparing to Sn-37Pb alloy Sn-Ag-Bi-Ga alloys have wider melting temperature range up to max. $18.7^{\circ}C$. With increasing Ag, Bi contents, the wettability of the alloys increased up to max. 6.6 mN. The vickers hardness of the alloys was max. 46.4 Hv. The ultimate tensile stress of the alloys was max. 60.3 MPa and the elongation was max. 1.2%. The joint strength between circuit board and solder was max. 55.5 N and the joint strength between connector and solder was max. 176.1 N. There were no cracks in this alloys after thermal shock test.

  • PDF

A study on soldering Characteristics between Sn-Ag-X system and BGA joints (BGA 접합부에서 Sn-Ag-X 계 solder의 soldering성 특성에 관한 연구)

  • 김봉균;박종현;오은주;이규하;서창제
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.81-83
    • /
    • 2004
  • 최근 대두되고 있는 환경오염문제로 인해 전자산업에서는 전 세계적으로 Pb 솔더에 관한 규제가 진행중에 있다. 이에 Pb free 솔더에 관한 연구가 활발히 진행 중에 있으며 그 중 Sn-Ag계 solder는 유력한 대체 solder로 대두되고 있다. (중략)

  • PDF

Polarization Behaviors of SnCu Pb-Free Solder Depending on the P, Ni, Addition (SnCu계 무연솔더의 Ni, P 첨가에 따른 분극거동)

  • Hong Won Sik;Kim Whee Sung;Park Sung Hun;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.528-535
    • /
    • 2005
  • It is inclined to increase that use of hazardous substances such as lead(Pb), mercury (Hg), cadmium(Cd) etc. are prohibited in the electronics according to environmental friendly policies of an advanced nation for protecting environment of earth. As this reasons, many researches for ensuring the reliability were proceeding in Pb free soldering process. n the flux remains on the PCB(printed circuit board) in the soldering process or the electronics exposed to corrosive environment, it becomes the reasons of breakdown or malfunction of the electronics caused by corrosion. Therefore in this studies we researched the polarization and Tafel properties of Sn40Pb and SnCu system solders based on the electrochemical theory. The experimental polarization curves were measured in distilled ionized water and 1 mole $3.5 wt\%$ NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrodes, respectively. To observe the electrochemical reaction, polarization test was conducted from -250mV to +250mV. From the polarization curves composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density((cow). In these results, we compared the corrosion rate of SnPb and SnCu solders.