• 제목/요약/키워드: Pb adsorption

검색결과 327건 처리시간 0.03초

키틴에 의한 중금속 Cd(II), Pb(II)이온의 흡착 및 회수에 관한 연구 (Study on Adsorption and Recovery of Heavy Metal Ions, Cd(II) and Pb(II), by Chitin)

  • 김은경;조영구;권영두;박미아;김한수;박광하
    • 분석과학
    • /
    • 제15권2호
    • /
    • pp.163-171
    • /
    • 2002
  • 수산가공 폐기물로 버려지는 게 껍질로부터 chitin을 추출하여 중금속 흡착제로 이용하였으며, 이 흡착제에 대해 Cd(II) 및 Pb(II) 이온의 흡착특성을 연구하였다. Chitin에 대한 Cd(II) 및 Pb(II) 이온의 흡착속도는 반응시간 2분경에 최대흡착량에 도달하였으며, 중금속 흡착에 미치는 pH의 영향은 두 이온 모두 pH 7.0>10.5>3.5순임을 알 수 있었다. Chitin에 대한 흡착률은 Cd(II)이온이 21${\sim}$99%이며, Pb(II)이온이 24${\sim}$95%이다. Cd(II)이온의 회수율은 22${\sim}$53%이고, Pb(II)이온의 회수율은 22${\sim}$73%로 나타났다. 이들 중금속 이온의 흡착양상은 Freundlich 흡착등온식에 비교적 잘 적용되었다.

화산재에 의한 수용액의 납 이온 흡착특성 (Adsorption characteristics of lead ion in aqueous solution by volcanic ash)

  • 김미연;소명기;김영관
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

Comparative study of Pb (II) adsorption from water on used cardboard and powdered activated carbon

  • Benhafsa, Fouad. Mekhalef;Bouchama, Abdelghani.;Chadli, Aicha.;Tadjer, Belgacem.;Addad, Djelloul.
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.73-83
    • /
    • 2022
  • In the present study, we compared the adsorption capacity of Pb (II) from contaminated water of used cardboard (UC) and a commercial powdered activated carbon (PAC), the latter has been characterized by different techniques, namely X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), wavelength dispersion x-ray fluorescence (WDXRF), infrared spectroscopy (IR) and surface area B.E.T analyzer. The effect of various parameters, such as the pH, the contact time, the amount of adsorbent, and the temperature on the adsorption of Pb (II) on both materials was investigated. The Pb (II) adsorptions are perfectly described by a pseudo-second-order model, while the intraparticle diffusion is a decisive step after the first minutes of contact. The fit to the Langmuir and Redlich-Peterson models seems perfect for these adsorption reactions. (PAC) showed a greater affinity for Pb (II) compared to (UC) and the adsorption of Pb (II) ions is strongly pH-dependent, on the other hand, the increase in temperature doesn't have much influence on the two solids. This study showed that the capacity of (UC) to adsorb Pb (II) from an aqueous solution is greater than two-thirds of that of (PAC).

소나무와 참나무를 이용한 Pb(II) 제거 (Pb(II) Removal from Aqueous Solutions Using Pinewood and Oakwood)

  • 엄병환;조성욱;박성직
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권4호
    • /
    • pp.450-459
    • /
    • 2014
  • 파쇄한 소나무와 참나무를 수중에서 Pb(II) 제거를 위한 흡착제로서 적용성을 검토하였다. 접촉시간, 초기 Pb(II) 농도, pH, 경쟁이온, 그리고 흡착제 주입량이 Pb(II) 흡착에 미치는 영향을 파악하기 위하여 회분 흡착 실험을 수행하였다. 동역학적 실험 결과, 소나무와 참나무에 Pb(II) 흡착은 유사 1차 모델과 유사 2차 모델 모두 적합한 것으로 나타났다. 평형 흡착 실험 결과는 결정계수가 소나무의 경우 0.956, 참나무의 경우 0.950으로 Freundlich 모델이 적합한 것으로 나타났다. 소나무와 참나무의 Pb(II) 최대 흡착양은 각각 16.853과 27.989 mg/g으로 나타났다. pH가 3에서 9로 증가함에 따라서 소나무와 참나무에 Pb(II) 흡착은 증가하였다. $Na^+$, $Ca^{2+}$, 그리고 $Al^{3+}$와 같은 양이온의 존재는 Pb(II) 흡착을 감소시켰다. Pb(II) 흡착은 증류수 조건에서 보다 해수에서 흡착량이 컸으며, 이는 해수에 존재하는 $CO{_3}^{2-}$$OH^-$ 이온이 Pb(II)와 화합물을 형성하기 때문이다. 본 연구를 통해서 Pb(II)로 오염된 물 정화에 소나무와 참나무가 활용될 것으로 판단된다.

Adsorption of Pb(II) Ions from Aqueous Solution Using Activated Carbon Prepared from Areca Catechu Shell: Kinetic, Isotherm and Thermodynamic Studies

  • Muslim, A.;Aprilia, S.;Suha, T.A.;Fitri, Z.
    • 대한화학회지
    • /
    • 제61권3호
    • /
    • pp.89-96
    • /
    • 2017
  • This study proposed adsorption of Pb(II) ions from aqueous solution using activated carbon prepared from areca catechu shell (ACS AC) using Timphan Method. The effects of independent variables on adsorption kinetic and isotherm have been investigated by conducting experiments in batch mode at neutral pH. The structural characterization of adsorbent was done by FT-IR and SEM analysis. The Pb(II) adsorption was correlated very well with the pseudo second-order kinetic (PSOKM) and Langmuir isotherm models (LIM). Increasing NaOH mass for activation and adsorption temperature increased weakly all the parameters of adsorption kinetic and isotherm. The Pb(II) ions adsorption capacity of the ACS AC at 27 and $45^{\circ}C$ was 50.51 and 55.25 mg/g, respectively. Thermodynamic parameters were determined, and the results confirmed the Pb(II) ions adsorption should be endothermic and spontaneous process, and both physical and chemical adsorption should be taken place.

Prussian blue immobilization on various filter materials through Layer-by-Layer Assembly for effective cesium adsorption

  • Wi, Hyobin;Kim, Hyowon;Kang, Sung-Won;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.245-250
    • /
    • 2019
  • Prussian blue (PB) is well known for its excellent $Cs^+$ ions adsorption capacity. Due to the high dispersibility of PB in aqueous phase, composite materials imbedding PB in supporting materials have been introduced as a solution. However, building PB particles inside porous supporting materials is still difficult, as PB particles are not fully formed and elute out to water. In this study, we suggest layer-by-layer (LBL) assembly to provide better immobilization of PB on supporting materials of poly vinyl alcohol sponge (PVA) and cellulose filter (CF). Three different PB attachment methods, ex-situ/in-situ/LBL assembly, were evaluated using PB leaching test as well as $Cs^+$ adsorption test. Changes of surface functionality and morphology during PB composite preparation protocols were monitored through Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicate that LBL assembly led to better PB attachment on supporting materials, bringing less eluting PB particles in aqueous phase compared to other synthesis methodologies, such as ex-situ and in-situ synthesis. By enhancing the stability of the adsorbent, adsorption capacity of PVA-PB with LBL improved nine times and that of CF-PB improved over 20 times. Therefore, the results suggest that LBL assembly offers a better orientation for growing PB particles on porous supporting materials.

구멍갈파래 및 톳에 대한 Cd(II), Pb(II) 이온의 흡착속도에 관한 연구 (A Study on the Adsorption Kinetics of the Heavy Metals, Cd(II) and Pb(II) Ions by the Uiva Pertusa and Hizakia Fusiformis)

  • 박광하;박미아;김기홍;김영하
    • 분석과학
    • /
    • 제12권5호
    • /
    • pp.360-369
    • /
    • 1999
  • 본 연구에서는 각종 수중 중금속을 제거할 목적으로 구멍갈파래와 톳에 대한 중금속이온의 흡착속도에 관한 연구를 수행하였다. 실험결과 구멍갈파래와 톳에 대한 Cd(II) 및 Pb(II) 이온의 흡착속도는 5분이내로 최대흡착량에 도달하였으며 구멍갈파래에 대한 흡착량이 더 많았다. 구멍갈파래에 대한 흡착율은 pH에 따라 Cd(II) 이온이 15.0~100%, Pb(II) 이온이 39.2~82.5%로 나타났다. 톳은 Cd(II) 이온이 18.3~100%, Pb(II) 이온이 56.4~94.7%로 나타났다. 한편 구멍갈파래에 대한 회수율은 pH에 따라 Cd(II) 이온이 75.0~83.6%, Pb(II) 이온이 79.1~85.5%로 나타났으며, 톳은 Cd(II) 이온이 66.7~85.0%, Pb(II) 이온이 77.6~83.9로 나타났다. 구멍갈파래에 대한 Cd(II) 및 Pb(II) 이온의 흡착량이 톳보다 더 많았다.

  • PDF

폐감귤박으로 합성한 활성탄에 의한 수용액 중의 Cu 및 Pb 이온의 제거 (Removal of Cu and Pb Ions from Aqueous Solution by Waste Citrus Peel-based Activated Carbon)

  • 문명준;감상규;이민규
    • 한국환경과학회지
    • /
    • 제27권6호
    • /
    • pp.401-410
    • /
    • 2018
  • Waste citrus peel-based activated carbon (WCAC) was prepared from waste citrus peels by activation with KOH. The removal of Cu and Pb ions from aqueous solution by the prepared WCAC was investigated in batch experiments. The solution pH significantly influenced Cu and Pb adsorption capacity and the optimum pH was 4 to 6. The adsorption of Cu and Pb ions by WCAC followed pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity calculated by Langmuir isotherm model was 31.91 mg/g for Cu and 92.22 mg/g for Pb. As the temperature was increased from 303 K to 323 K, the ${\Delta}G^{\circ}$ value decreased from -7.01 to -8.57 kJ/mol for Cu ions and from -0.87 to -2.06 kJ/mol for Pb ions. These results indicated that the adsorption of Cu and Pb by WCAC is a spontaneous process.

프러시안 블루(PB)의 방사성 세슘 흡착 메커니즘 연구 (Adsorption Mechanism of Radioactive Cesium by Prussian Blue)

  • 장성찬;김준영;허윤석;노창현
    • 방사선산업학회지
    • /
    • 제9권3호
    • /
    • pp.127-130
    • /
    • 2015
  • Since the accident at the Fukushima Daiichi power plant, Prussian blue (PB) has attracted increasing attention as a material for use in decontaminating the environment. We have focused the fundamental mechanism of specific $Cs^+$ adsorption into PB in order to develop high-performance PB-based $Cs^+$ adsorbents. The ability of PB to adsorb Cs varies considerably according to its origin such as what synthesis method was used, and under what conditions the PB was prepared. It has been commonly accepted that the exclusive abilities of PB to adsorb hydrated $Cs^+$ ions are caused by regular lattice spaces surrounded by cyanido-bridged metals. $Cs^+$ ions are trapped by simple physical adsorption in the regular lattice spaces of PB. $Cs^+$ ions are exclusively trapped by chemical adsorption via the hydrophilic lattice defect sites with proton-exchange from the coordination water. Prussian blue are believed to hold great promise for the clean-up of $^{137}Cs$ contaminated water around nuclear facilities and/or after nuclear accidents.

층층나무와 신갈나무 폐바이오매스를 활용한 수용액 중 납 제거 효율 및 기작 (Efficiency and Mechanism of Pb(II) Removal from Aqueous Solutions Using Cornus controversa and Quercus mongolica Biomass Waste)

  • 최시영;정석순;양재의;김혁수;조준형
    • 한국환경농학회지
    • /
    • 제40권4호
    • /
    • pp.239-247
    • /
    • 2021
  • BACKGROUND: Enormous amounts of the wood biomass wastes have been produced through various wood processing. This study characterizes the surface characteristics of biomass powders of Cornus controversa (CC) and Quercus mongolica (QM) and investigates their removal efficiency and mechanism for Pb (II) in aqueous solution on which to base potential recycling alternative of the wood biomass. METHODS AND RESULTS: Batch experiments were conducted under different conditions of Pb concentrations, temperatures, time and solid/solution ratios. Adsorption isotherm of Pb by CC and QM biomass was explained significantly by the Langmuir model, indicating Pb was likely adsorbed on the monolayer of the surfaces. The adsorption kinetics were fitted significantly to the double first-order model consisting of rapid and slow steps. The respective rate constants (k1) of CC and QM for the rapid adsorption kinetic steps were 0.051 and 0.177 min-1, and most of the sorption reactions proceeded rapidly within 6-20 minutes. The maximum adsorption quantities (qmax) of Pb were 17.25 and 23.47 mg/g for CC and QM, respectively. Thermodynamic parameters revealed that adsorption of Pb on the biomass of CC and QM was a spontaneous endothermic reaction. CONCLUSION(S): Results demonstrate that biomass wastes of CC and QM can be used as Pb adsorbents judging from adsorption isotherm, kinetics, and thermodynamic parameters.