Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.2.073

Comparative study of Pb (II) adsorption from water on used cardboard and powdered activated carbon  

Benhafsa, Fouad. Mekhalef (Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC)
Bouchama, Abdelghani. (Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC)
Chadli, Aicha. (Biotechnology applied laboratory to agriculture and environmental preservation, higher school of agronomy)
Tadjer, Belgacem. (Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC)
Addad, Djelloul. (Laboratoire des Eco Materiaux Fonctionnels et Nanostructures, Universite de Mohammed Boudiaf)
Publication Information
Membrane and Water Treatment / v.13, no.2, 2022 , pp. 73-83 More about this Journal
Abstract
In the present study, we compared the adsorption capacity of Pb (II) from contaminated water of used cardboard (UC) and a commercial powdered activated carbon (PAC), the latter has been characterized by different techniques, namely X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), wavelength dispersion x-ray fluorescence (WDXRF), infrared spectroscopy (IR) and surface area B.E.T analyzer. The effect of various parameters, such as the pH, the contact time, the amount of adsorbent, and the temperature on the adsorption of Pb (II) on both materials was investigated. The Pb (II) adsorptions are perfectly described by a pseudo-second-order model, while the intraparticle diffusion is a decisive step after the first minutes of contact. The fit to the Langmuir and Redlich-Peterson models seems perfect for these adsorption reactions. (PAC) showed a greater affinity for Pb (II) compared to (UC) and the adsorption of Pb (II) ions is strongly pH-dependent, on the other hand, the increase in temperature doesn't have much influence on the two solids. This study showed that the capacity of (UC) to adsorb Pb (II) from an aqueous solution is greater than two-thirds of that of (PAC).
Keywords
adsorption; modeling; Pb (II); powdered activated carbon; used cardboard;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alshameri, A., Yan, C. and Lei, X. (2014), "Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: Preparation, characterization and thermodynamic", Micropor. Mesopor. Mater. J., 196, 145-157. https://doi.org/10.1016/j.micromeso.2014.05.008.   DOI
2 Amarasinghe, B.M.W.P.K. and Williams, R.A. (2007), "Tea waste as a low-cost adsorbent for the removal of Cu and Pb from wastewater", Chem, Eng. J., 132(1-3), 299-309. https://doi.org/10.1016/j.cej.2007.01.016.   DOI
3 Axtell, N.R., Sternberg, S.P. and Claussen, K. (2003), "Lead and nickel removal using microspora and lemna minor", Bioresour. Technol., 89(1), 41-48. https://doi.org/10.1016/S0960-8524(03)00034-8.   DOI
4 Bai, S., Wang, T., Tian, Z., Cao, K. and Li, J. (2020), "Facile preparation of porous biomass charcoal from peanut shell as adsorbent", Sci. Rep., 10(1), 15845. https://doi.org/10.1038/s41598-020-72721-0.   DOI
5 Bharathi, S.K. and Ramesh, P.S. (2012), "Equilibrium, thermodynamic and kinetic studies on adsorption of a basic dye by citrullus lanatus rind", Iran J. Energ. Environ., 3(1), 23-34. https://doi.org/10.5829/idosi.ijee.2012.03.01.0130.   DOI
6 Bouberka, Z., Kacha, S., Kameche, M., ElmalehL, S. and Derriche, Z. (2005), "Sorption study of an acid dye from an aqueous solutions using modified clays", J. Hazard. Mater., 119(1-3), 117-124. https://doi.org.10.1016/j.jhazmat.2004.11.026.   DOI
7 Weber, Jr. W.J. and Morris, J.C. (1963), "Kinetics of adsorption on carbon from solution", J. Sanit. Eng. Div., 89(2), 31-59. https://doi.org/10.1061/JSEDAI.0000430   DOI
8 Xia L., Huang, Z., Zhong, L., Xie, F., Tang, C. and Tsui, C. (2018), "Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr (VI) from aqueous solution", J. Polym., 10(8), 931. https://doi.org/10.3390/polym10080931.   DOI
9 Hospodarova, V., Singovszka, E. and Stevulova, N. (2018), "Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials", Am. J. Anal. Chem., 9(6), 303-310. https://doi.org/10.4236/ajac.2018.96023.   DOI
10 Elovich, S.Y. and Larionov, O.G. (1962), "Theory of adsorption from nonelectrolyte solutions on solid adsorbents", Russ. Chem. Bull., 11(2), 198-203. https://doi.org/10.1007/BF00908017.   DOI
11 Kanan, K. and Sundaram, M.M. (2001), "Kinetics and mechanism of removal methylene blue by adsorption on the various carbons-a comparative study", Dyes Pigments, 51(1), 25-40. https://doi.org/10.1016/S0143-7208(01)00056-0   DOI
12 Redlich, O. and Peterson, D.L. (1959), "A useful adsorption isotherm", J. Phys. Chem., 63(6), 1024. https://doi.org/10.1021/j150576a611.   DOI
13 Sepulvida. L.A. and Santana. C.C. (2013), "Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat", J. Environ. Tech., 34(8), 967-977. https://doi.org/10.1080/09593330.2012.724251.   DOI
14 Shaban, M., Abukhadra, M.R., Parwaz, A.A. and Jabili, B.M. (2018), "Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine", J. Taiwan Inst. Chem. Eng., 82, 102-116. https://doi.org/10.1016/j.jtice.2017.10.023.   DOI
15 Koswojo, R., Utomo, R.P., Ju, Y.H., Ayucitra, A., Soetaredjo, F.E., Sunarso, J. and Ismadji, S. (2010), "Acid green 25 removal from wastewater by organo-bentonite from pacitan", Appl. Clay Sci., 48(1-2), 81-86. https://doi.org/10.1016/j.clay.2009.11.023.   DOI
16 Mckay, G., Otterburn, M.S. and Sweeney, A.G. (1980), "The removal of colour from effluent using various adsorbents-IV. Silica: Equilibria and column studies", Water Res., 14(1), 21-27. https://doi.org/10.1016/0043-1354(80)90038-X.   DOI
17 Lagergren, S (1898), "Zur theorie der sogenannten adsorption geloster stoffe", Kungliga Svenska Vetenskapsakademiens Handlingar, 24(1), 1-39.
18 Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica, and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.   DOI
19 Maier, R.S. and Schure, M.R. (2018), "Transport properties and size exclusion effects in wide-pore superficially porous particles", Chem. Eng. Sci., 185, 243-255. https://doi.org/10.1016/j.ces.2018.03.041.   DOI
20 Milenkovic, D.D., Milosavljevic, M.M., Marinkovic, A.D., Dokic, V.R., Mitrovic, J.Z. and Ljbojic, A.R (2013), "Removal of copper (II) ion from aqueous solution by high-porosity activated carbon", Water S.A, 39(4), 515-522. https://doi.org/10.4314/wsa.v39i4.10.   DOI
21 Crini, G. and Badot, P.M. (2010), Sorption Processes and Pollution: Conventional and Non-Conventional Sorbents for Pollutant Removal From Wastewaters, Presses Universitaires de Franche-Comte, Besancon, France.
22 Shirsath, D.S. and Shrivastava, V.S. (2012), "Removal of hazardous dye Ponceau-S by using chitin: An organic bioadsorbent", Afr. J. Environ. Sci. Technol., 6(2), 115-124. https://doi.org/10.5897/AJEST11.118.   DOI
23 Sparks, D.L. (2003), Environmental Soil Chemistry, Elsevier, California, U.S.A.
24 Sreejalekshmi, K.G., Krishnan, K.A. and Anirudhan, T.S. (2009), "Adsorption of Pb (II) and Pb (II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies", J. Hazard. Mater., 161(2-3), 1506-1513. https://doi.org/10.1016/j.jhazmat.2008.05.002.   DOI
25 Kazak, O., Tor, A., Akin, I. and Arslan, G. (2015), "Preparation of new polysulfone capsules containing Cyanex 272 and their properties for Co (II) removal from aqueous solution", J. Environ. Chem. Eng., 3(3), 1654-1661. https://doi.org/10.1016/j.jece.2015.06.007.   DOI
26 Tran, H.N., You, S.J. and Chao, H.P. (2016), "Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study", J. Environ. Chem. Eng., 4(3), 2671-2682. https://doi.org/10.1016/j.jece.2016.05.009.   DOI
27 Ayyappan, R., Carmalin Sophia, A., Swaminathan, K. and Sandhya, S. (2005), "Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes", Proc. Biochem., 40(3-4), 1293-1299. https://doi.org/10.1016/j.procbio.2004.05.007.   DOI
28 Mohammadi, S.Z., Karimi, M.A., Afzali, D. and Mansouri, F. (2010), "Removal of Pb (II) from aqueous solutions using activated carbon from sea-buckthorn stones by chemical activation", Desalination, 262(1-3), 86-93. https://doi.org/10.1016/j.deset al.2010.05.048.   DOI
29 Jeongmin, H., Seungwoo, L., Dongah, K., Eunmi, K. and Yuhoon, H. (2020), "Improved adsorption performance of heavy metals by surface modification of polypropylene/polyethylene media through oxygen plasma and acrylic acid", Membr. Water Treat, 11(3), 231-235. https://doi.org/10.12989/mwt.2020.11.3.231.   DOI
30 Boulaiche, W., Hamdi, B. and Trari, M. (2019), "Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies", Appl. Water Sci., 9(2), 39. https://doi.org/10.1007/s13201-019-0926-8   DOI
31 Karthikeyan, T., Rajgopal, S., and Miranda, L.R. (2005), "Chromium (VI) adsorption from aqueous solution by hevea brasilinesis sawdust activated carbon", J. Hazard Mater, 124(1-3), 92-199. https://doi.org/10.1016/j.jhazmat.2005.05.003.   DOI
32 Kataria. N., Garg, V.K., Jain. M. and Kadirvelu. K. (2016), "Preparation, characterization and potential use of flower shaped Zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution", Adv. Powder Technol., 27(4), 1180-1188. https://doi.org/10.1016/j.apt.2016.04.001.   DOI
33 Battas, A., El Gaidoumi, A., Ksakas, A. and Kherbeche, A. (2019), "Adsorption study for the removal of nitrate from water using local clay", Sci. World J., 2019, 9529618. https://doi.org/10.1155/2019/9529618.   DOI
34 Mekhalef Benhafsa, F., Kacha, S., Leboukh, A. and et Belaid, K.D (2018) "Etude comparative de l'adsorption du colorant Victoria Bleu Basique a partir de solutions aqueuses sur du carton usage et de la sciure de bois", J. Water Sci., 31(2), 109-126. https://doi.org/10.7202/1051695ar.   DOI
35 Elboughdiri, N. (2020), "The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater", Cogent Eng., 7(1),1782623. https://doi.org/10.1080/23311916.2020.1782623.   DOI
36 Briao, G.D., de Andrade, J.R., da Silva, M.G.C. and Viera. M.C.A. (2020), "Removal of toxic metals from water using chitosan-based magnetic adsorbents", Environ. Chem. Lett., 18(4), 1145-1168. https://doi.org/10.1007/s10311-020-01003-y.   DOI
37 Chionyedua, T.O., Cosmas, C.U., Alechine, E.A. and Leslie, F.P. (2019), "Comparative study of the adsorption capacity of lead (II) ions onto bean husk and fish scale from aqueous solution", J. Water Reuse D., 9(3), 249-262. https://doi.org/10.2166/wrd.2019.061.   DOI
38 El-Ashtoukhy, E.S.Z., Amin, N.K. and Abdelwahab, O. (2008), "Removal of lead (II) and copper (II) from aqueous solution using Pomegranate Peel as a new adsorbent", Desalination, 223(1-3), 162-173. https://doi.org/10.1016/j.desal.2007.01.206.   DOI
39 Freundlich, H. (1907), "u ber die adsorption in losungen", Zeitschrift fur Physikalische Chemie, 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723.   DOI
40 Georgescu, A.M., Nardou, F., Zichil, V. and Nistor, I.D. (2018), "Adsorption of lead (II) ions from aqueous solutions onto Cr-pillared clays", Appl. Clay Sci., 152, 44-52. https://doi.org/10.1016/j.clay.2017.10.031.   DOI
41 Ghibate, R., Senhaji, O. and Taouil, R. (2021), "Kinetic and thermodynamic approaches on rhodamine b adsorption onto pomegranate peel", Case Stud. Chem. Environ. Eng., 3, 1000782. https://doi.org/10.1016/j.cscee.2020.100078.   DOI
42 Hameed, B.H. (2009), "Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue", J. Hazard. Mater., 162(2-3), 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120.   DOI
43 O zcan, A., O ncu, E.M. and O zcan, A.S. (2006), "Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite", Colloid Surfaces A., 277(1-3), 90-97. https://doi.org/10.1016/j.colsurfa.2005.11.017.   DOI
44 Simonin, J.P. (2016), "On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics", Chem. Eng. J., 300, 254-263. https://doi.org/10.1016/j.cej.2016.04.079.   DOI
45 Hana, J., Nohback, P. and Hyokwan, B. (2020) "Removal of Pb (II) from wastewater by biosorption using powdered waste sludge", Membr. Water Treat., 11(1), 41-48. https://doi.org/10.12989/mwt.2020.11.1.041.   DOI
46 Hashemian. S. (2011), "Kinetic and thermodynamic of adsorption of methylene blue (MB) by CuFe2O4/rice bran composite", Int. J. Phys. Sci., 6(27), 6257-6267. https://doi.org/10.5897/IJPS11.187.   DOI
47 Nejadshafiee, V. and Islami, M.R. (2019), "Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent", Mater. Sci. Eng. C, 101, 42-52. https://doi.org/10.1016/j.msec.2019.03.081.   DOI
48 Obayomi, K.S., Bello, J.O., Nnoruka, J.S., Adediran. A.A and Olajide. P.O. (2019), "Development of low-cost bio-adsorbent from agricultural waste composite for Pb (II) and As (III) sorption from aqueous solution", Cogent Eng., 6(1), 1687274. https://doi.org/10.1080/23311916.2019.1687274.   DOI
49 Ponnusamy, S.K. and Subramaniam, R. (2013), "Process optimization studies of Congo red dye adsorption onto cashew nutshell using response surface methodology", Int. J. Ind. Chem., 4(1), 17. https://doi.org/10.1186/2228-5547-4-17.   DOI
50 Allen, S.J., Mckay, G. and Khader, K.Y.H. (1989), "Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat", Environ. Pollut., 56(1), 39-50. https://doi.org/10.1016/0269-7491(89)90120-6.   DOI
51 Rashed, M.N., Gad, A.A. and Abdeldaiem, A.M. (2018), "Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water", Adv. Environ. Res., 7(1), 53-71. https://doi.org/10.12989/aer.2018.7.1.053   DOI
52 Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B. and Mishra, I.M. (2006), "Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics, and thermodynamics", Colloid Surface A., 272(1-2), 89-104. https://doi.org/10.1016/j.colsurfa.2005.07.016.   DOI
53 Alnajrani, M.N. and Alsager, O.A. (2020), "Removal of antibiotics from water by polymer of intrinsic microporosity: Isotherms, kinetics, thermodynamics, and adsorption mechanism", Sci. Rep., 10(1), 794. https://doi.org/10.1038/s41598-020-57616-4.   DOI
54 Herawati, N., Suzuki, S., Hayashi, K., Rivai, I.F. and Koyoma, H. (2000), "Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type", B. Environ. Contam. Tox., 64(1),33-39. https://doi.org/10.1007/s001289910006.   DOI
55 Ho, Y.S. and Mckay, G. (1999), "Pseudo-second order model for sorption processes", Proc. Biochem., 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.   DOI