• Title/Summary/Keyword: Pb addition

Search Result 751, Processing Time 0.031 seconds

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Transitions in Bronze Technology Observed in Bronze Artifacts Excavated from the Shilla Wang-Gyong (신라왕경 출토 청동유물에서 확인되는 청동기 제작기술의 변천)

  • Jeong, Young-Dong;Park, Jang-Shik
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.267-284
    • /
    • 2004
  • As an initial step to understand the transitions in Korean bronze technology the present study has examined metallurgical microstructures of 8 artifacts excavated from the Silla Wang-Gyong site in Kyongju. Important trends have been found in alloy compositions and also in manufacturing processes. In the design of alloys, the Sn content was apparently changing toward the peritectic point, 22 mass %, of the Cu-Sn phase diagram while the Pb addition was intentionally avoided. This trend in composition was found accompanied by the introduction, subsequent to casting, of such special thermo-mechanical treatments as quenching and forging in artifact manufacture. In addition, the Sn content in alloys containing a significant amount of As was relatively low and no evidence of forging was observed in them. The use of quenching and forging and the rejection of Pb and As from alloys are all necessary requirements if the brittle nature of high Sn alloys is to be overcome in bronze working. This paper will show that the Wang-Gyong era corresponds to that of innovations leading to the technical climax in Korean bronze tradition, which has been maintained up to the present.

Dielectric and Piezoelectric Characteristics of 0.95(K0.5Na0.5)NbO3-0.05Li(Sb0.8Nb0.2)O3 Pb-free Ceramics with amount of Ag2O Addition (Ag2O 첨가량에 따른 0.95(K0.5Na0.5)NbO3-0.05Li(Sb0.8Nb0.2)O3 무연 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.925-929
    • /
    • 2009
  • In this study, $0.95(K_{0.5}Na_{0.5})NbO_3-0.05Li(Sb_{0.8}Nb_{0.2})O_3$ ceramics were investigated as a function of the amount of $Ag_2O$ addition in order to improve dielectric and piezoelectric properties of lead-free piezoelectric ceramics. With increasing the amount of $Ag_2O$ addition, density and electromechanical coupling factor ($k_p$) increased up to 0.2 wt.% $Ag_2O$ and decreased above 0.2 wt.% $Ag_2O$. At the sintering temperature of $1020^{\circ}C$, electromechanical coupling factor ($k_p$), density, dielectric constant (${\varepsilon}r$) and curie temperature (Tc) of ceramics with 0.2 wt% $Ag_2O$ showed the optimal values of 0.42, $4.33\;g/cm^3$, 738 and $393^{\circ}C$, respectively.

The Content and Risk Assessment of Heavy Metals in Herbal Pills (유통 환제의 유해 중금속 함량 및 위해도 평가)

  • Lee, Sung-Deuk;Lee, Young-Ki;Kim, Moo-Sang;Park, Seok-Ki;Kim, Yeon-Sun;Chae, Young-Zoo
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this study is investigation of contamination levels and assessment of health risk effects of heavy metals in herbal pills. 31 Items and 93 samples were obtained for this investigation from major herbal medicine producing areas, herbal markets and on-line supermarkets from Jan to Jun in 2010. Inductively coupled plasma mass spectrometer method was conducted for the quantitative analysis of Pb, Cd and As. In addition, the mercury analyzer system was conducted for that of Hg without sample digestion. The average contents of heavy metals in samples were as follows : 0.87 mg/kg for Pb, 0.08 mg/kg for Cd, 2.87 mg/kg for As and 0.16 mg/kg for Hg, respectively. In addition, the average contents of heavy metals in different parts of plants, including cortex, fructus, herba, radix, seed, algae and others were 0.63 mg/kg, 3.94 mg/kg, 1.42 mg/kg, 1.05 mg/kg, 0.16 mg/kg, 22.31 mg/kg and 10.17 mg/kg, respectively. After the estimations of dietary exposure, the acceptable daily intake (ADI), the average daily dose (ADD), the provisional tolerable weekly intake (PTWI) and the relative hazard of heavy metals were evaluated. As the results, the relative hazards compared to PTWI in samples were below the recommended standard of JECFA as Pb 3.1%, Cd 0.9%, Hg 0.5%. Cancer risks through slope factor (SF) by Ministry of Environment Republic Korea and Environmental Protection Agency was $4.24{\times}10^{-7}$ for Pb and $3.38{\times}10^{-4}$ for As (assuming that the total arsenic content was equal to the inorganic arsenic). Based on our results, possible Pb-induced cancer risks in herbal pills according to parts used including cortex, fructus, herba, radix, seed, algae and others were $1.95{\times}10^{-7}$, $1.45{\times}10^{-6}$, $2.14{\times}10^{-7}$, $6.27{\times}10^{-7}$, $1.99{\times}10^{-8}$, $3.61{\times}10^{-7}$ and $9.64{\times}10^{-8}$, respectively. Possible As-induced cancer risks in herbal pills by parts used including cortex, fructus, herba, radix, seed, algae and others were $1.54{\times}10^{-5}$, $7.24{\times}10^{-5}$, $1.23{\times}10^{-4}$, $2.02{\times}10^{-5}$, $3.25{\times}10^{-6}$, $2.18{\times}10^{-3}$ and $5.67{\times}10^{-6}$ respectively. Taken together, these results indicate that the majority of samples except for some samples with relative high contents of heavy metals were safe.

The Content and Risk Assessment of Heavy Metals and Sulfur Dioxide in Herbs for Food and Medicine in Seoul Area (2019-2023) (서울지역 식약공용 농·임산물의 중금속과 이산화황 함량 및 위해성 평가(2019-2023))

  • Sung-Hee Han;So-Hyun Park;Ji-Hye Kim;Hyun-Jung Jang;Ae-Kyung Kim;Ji-Hun Jung;Eun-Sun Yun;Ju-Sung Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.4
    • /
    • pp.322-334
    • /
    • 2024
  • This study investigated the content of heavy metals (Pb, Cd, As, and Hg) and SO2 and conducted a risk assessment of 1,340 samples of 60 herbs used for food and medicine in Seoul between 2019 and 2023. The analysis was performed using inductively coupled plasma mass spectrometry (ICP-MS), a mercury analyzer, and the Monier-Williams method. The mean values and ranges of the heavy metals were as follows: Pb, 0.327 mg/kg (not detectable [ND]-36.933); Cd, 0.083 mg/kg (ND-1.700); As, 0.075 mg/kg (ND-2.200); and Hg, 0.004 mg/kg (ND-0.047). Pb exceeded the permissible limit of 36.933 mg/kg in one sample of Poria Sclerotium. Cd exceeded the permissible limit of 1.700 mg/kg and 0.650 mg/kg in the two samples of Chrysanthemi Zawadskii Herba. The mean and range of SO2 was 0.75 mg/kg (ND-192.00), with two samples of Gastrodiae Rhizoma exceeding the permissible limit at 192.00 mg/kg and 42.00 mg/kg. Pb was highest in the perithecium (1.377 mg/kg), followed by Cd in the cortex (0.156 mg/kg) and caulis (0.144 mg/kg), As in leaves (0.149 mg/kg), and Hg in the herba (0.009 mg/kg) and leaves (0.009 mg/kg). SO2 was the highest in the rhizomes (4.12 mg/kg). The Pb, Cd, and Hg levels did not differ significantly between the domestic, Chinese, and imported products; however, As and SO2 levels were the highest in the Chinese products. As a result of the risk assessment, all the margins of exposure (MOE) values of Pb, except for Poria Sclerotium, were ≥1, indicating that most samples were safe. The hazard index (HI) for Cd, As, and Hg were <100%, indicating a safety level for food and medicine. In addition, the HI for SO2 did not exceed 1 for any of the items, indicating safe levels.

Analysis of volatile compounds and metals in essential oil and solvent extracts of Amomi Fructus (사인으로부터 추출한 정유와 용매 추출물의 휘발성 물질 및 금속성분 분석)

  • Lee, Sam-Keun;Eum, Chul Hun;Son, Chang-Gue
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.436-445
    • /
    • 2015
  • Amomi Fructus with anti-oxidative activity was chosen and essential oil was obtained by SDE (simultaneous distillation extraction), and 39 constituents were determined by GC-MS (gas chromatography-mass spectrometry). Major components were camphor, borneol acetate, borneol, D-limonene and camphene. Three solvent extracts such as hexanes, diethyl ether and methylene chloride from Amomi Fructus were obtained. These were analyzed by GC-MS and 4 more constituents were identified in addition to 39 components discovered in essential oil. Five major components such as camphor, borneol acetate, borneol, D-limonene and camphene were also detected, however the relative peak percents of those components were different from those of constituents in essential oil. To estimate the kind and the amount of materials evaporated at certain temperature and conditions from essential oil and solvent extracts, dynamic headspace apparatus was used and materials evaporated and trapped at certain conditions were analyzed by GC-MS. Recovery yield of SDE method from Amomi Fructus was measured by using camphor and standard calibration solution of camphor methanol solution and, the yield was 82.0%. Content of Hg was measured by mercury analyzer and contents of Cd, Pb, Cr, Mn, Co, Ni, Cu and Zn in Amomi Fructus, essential oils and solvent extracts were determined by ICP-MS (Inductively coupled plasma-mass spectrometer). Pb, Cd and Hg were measured in the concentration of 0.72 mg/kg, <0.10 mg/kg and 0.0023 mg/kg, respectively and these were below permission level of purity test. Contents of Mn, Cu and Zn in Amomi Fructus were 213 mg/kg, 8.29 mg/kg and 31.0 mg/kg, respectively and which were relatively higher than other metals such as Cr, Co and Ni. Metals such as Mn (0.65 ~ 9.08 mg/kg), Cu (1.16 ~ 4.40 mg/kg) and Zn (1.10 ~ 3.80 mg/kg) in essential oil and solvent extracts were detected. At this point it is not clear that the metals were cross-contaminated in the course of treating Amomi Fructus or metals were contained in Amomi Fructus. The influence evaluation toward biological model study of these metals in essential oil and solvent extracts will be needed.

Monitoring of Heavy Metals in Fruits in Korea (유통 중인 과일류의 중금속 모니터링)

  • Lee, Jin-Ha;Seo, Ji-Woo;An, Eun-Sook;Kuk, Ju-Hee;Park, Ji-Won;Bae, Min-Seok;Park, Sang-Wook;Yoo, Myung-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • According to the Codex committee, the maximum allowable level for lead in fruits is 0.1 mg/kg. This survey was conducted as a surveillance program following the establishment of safety guideline for fruits in Korea. Concentrations of lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) were measured in 927 samples using a ICP-MS and a mercury analyzer. The recoveries of microwave digestion method were 86.0-110.4% for Pb, 81.0-104.0% for Cd and 82.0-104.7% for As by standard addition method. The recovery of direct mercury analyzer was 106.5% for Hg. The average levels of Pb in ${\mu}g/kg$ were $10.0{\pm}12.8$ for apple, $8.8{\pm}10.9$ for pear, $4.1{\pm}4.4$ for persimmons, $14.9{\pm}12.3$ for mandarin, $7.1{\pm}6.5$ for orange, $3.1{\pm}3.3$ for banana, $8.8{\pm}8.9$ for kiwi, and $9.3{\pm}9.7$ for mango. The average levels of Cd in ${\mu}g/kg$ were $0.4{\pm}0.3$ for apple, $2.0{\pm}1.6$ for pear, $0.3{\pm}0.3$ for persimmon, $0.1{\pm}0.1$ for mandarin, $0.1{\pm}0.1$ for orange, $1.3{\pm}1.8$ for banana, $0.5{\pm}0.5$ for kiwi, and $0.7{\pm}0.6$ for mango. The average levels of As in ${\mu}g/kg$ were $2.0{\pm}2.1$ for apple, $1.2{\pm}1.3$ for pear, $1.5{\pm}1.2$ for persimmon, $0.8{\pm}0.3$ for mandarin, $1.5{\pm}0.5$ for orange, $1.8{\pm}1.2$ for banana, $1.6{\pm}1.5$ for kiwi, and $1.2{\pm}1.5$ for mango. The average levels of Hg in ${\mu}g/kg$ were $0.5{\pm}0.4$ for apple, $0.3{\pm}0.2$ for pear, $0.2{\pm}0.1$ for persimmon, $0.2{\pm}0.1$ for mandarin, $0.2{\pm}0.1$ for orange, $0.2{\pm}0.0$ for banana, $0.2{\pm}0.2$ for kiwi, and $0.6{\pm}0.2$ for mango. Based on the Korean public nutrition report 2005, these levels (or amounts) are calculated only at 0.17% for Pb, 0.013% for Cd and 0.006% for Hg of those presented in provisional tolerable weekly Intake (PTWI) which has been established by FAO/WHO. Therefore, the levels presented here are presumed to be adequately safe.

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

A study on the fixation of heavy metals with modified soils in the landfill liner (개량혼합토를 이용한 폐기물 매립지 차수층의 중금속 고정능력에 관한 연구)

  • 노회정;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • The authors selected the modified soil method, and then performed the geotechnical and environmental laboratory test, and evaluated whether the modified soil liner could be accepted as a barrier layer in landfill. Unlike the results of the natural soil(CL), those of the hydraulic conductivity test of stabilized soil met the standard value. According to these results, the optimal mixing ratio of a mixture(cement : bentonite : stabilizing agent) was 90 : 60 : 1 with mass ratio(kg) for 1㎥ with soil, and it was possible to use poor quality bentonite. B\circled2 because of a little difference from results with high quality bentonite. B\circled1. The Cation Exchange Capacity(CEC) of the modified soil was increased about 1.5 times compared with the natural soil; however. the change of CEC with a sort of additives was not detected. In order to observe the change of the chemical components and crystal structures, the natural and the modified soils with the sorts of additives were measured by the XRF(X-Ray Flourescence Spectrometer) and SEM, but there was no significant change. The artificial leachate with the heavy meals ($Pb^{2+}$ , $Cu^{2+}$, $Cd^{2+}$ Zn$^{2+}$ 100mg/L) was passed through the natural soil and modified soils in columns. In the natural soil, Cd$^{2+}$ and $Zn^{2+}$ were identified, simultaneously the pH of outflow was lower, and then came to the breakthrough point. The removal efficiency of the natural soil was showed in order of following : $Pb^{2+}$$Cu^{2+}$ > $Zn^{2+}$ > $Cd^{2+}$ On the other hand, modified soils were not showed the breakthrough condition like the result of the natural soil. The modified soil with the lower quality bentonite, B\circled2(column3) was more stable with respect to chemical attack than that with the higher bentonite, B\circled1(column2) because the change range of outflow pH in columns was less than that of outflow pH in column2. In addition, the case of adding the stabilizing agent(column4) was markedly showed the phenomena.ena.

Heavy Metal and Amino Acid Contents of Soybean by Application of Sewage and Industrial Sludge (생활하수 및 산업폐수 슬러지 처리에 따른 콩의 중금속 및 아미노산 함량)

  • Moon, Kwang-Hyun;Kim, Jae-Young;Chang, Moon-Ik;Kim, Un-Sung;Kim, Seong-Jo;Baek, Seung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.268-277
    • /
    • 2013
  • This study investigates the effects of accumulated levels of heavy metals and nutrients of cultivated soybean plant tissues, after the continuous application of sewage sludge (SS) and industrial sludge (IS). SS and IS were applied to soybean plants at loading of 0, 11.25, 22.50, and 45.00 Mg/ha, and the contents of heavy metals (Cd, Pb, Ni, Cu, and Zn), proteins, and amino acids in the cultivated soybean plants were measured. The Cd content in the soybean was 0.02~0.05 mg/kg, which is within the safety level set in the standard, and that of Pb was 0.02~0.15 mg/kg, which is also within the safety level except for IS 45 Mg/ha. The soybean harvest quantity was higher in the treatment groups than the control group in the first year. However, in the second year, SS had lower harvest and IS had the same level or a decreasing tendency, compared with the control group. In the first year, the content of amino acid which followed handling of SS was increased in the sludge groups more than in the control group in the case of glutamate. However, the influence of continuous application was increased in the sludge groups in the case of amino acids of 12 types. In conclusions, the accumulation in soybean of heavy metals by sludge treatment is not a problem, but the decreased yields needs to be considered. In addition, the most appropriate level of sludge treatment was 11.25 Mg/ha.