• Title/Summary/Keyword: Pb 동위원소

Search Result 105, Processing Time 0.029 seconds

Rapid and Precise Determination of Pb Isotope Ratios Using Mu1ti-Collector ICP/MS (다검출기 유도결합 플라즈마 질량분석기를 이용한 신속하고 정밀한 Pb 동위원소 분석)

  • 최만식;정창식;신형선;임태선
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.157-171
    • /
    • 2001
  • This study investigated the effects of Pb/Tl ratio, Pb concentration and concomitant matrix elements on the measurement of Pb isotope ratios using multi-collector ICP/MS (AXIOM MC model). Accuracy and reproducibility of Pb isotope ratios in NBS 981 solution were estimated for 42 data measured from March to August 2001. Pb isotopes measured in rocks, bronzes and sediments were compared to data measured by TIMS. Reproducibilities for $^{206}Pb/^{204}Pb,\; ^{207}Pb/^{204}Pb,\;and\;^{208}Pb/^{204}Pb$ ratio were about 500 ppm (2sd) and for $^{207}Pb/^{206}Pb$\;and\;^{208}Pb/^{206}Pb$ were 100~200 ppm for 200 ng of Pb in NBS 981 solution. The optimum conditions for the analysis of Pb isotope ratios with AXIOM MC for best accuracy and reproducibility were defined as follows; 1) Pb/Tl ratio is about 10 2) Pb concentration is about 100 ng/ml 3) correction for mass discrimination is performed by exponential law using 2.3887 of $^{205}Tl/^{203}Tl$ and Pb mass fractionation factor empirically obtained from $ln(^{208}Pb/^{206}Pb)-ln(^{205}Tl/^{203}Tl)$ relationship. The sample data measured with MC/ICP/MS for acid-digested and chemically separated rock samples, and acid-digested bronze samples and sediment samples coincide with those of TIMS within analytical errors. Therefore, MC/ICP/MS is a rapid analytical technique for Pb isotope ratios with the similar precision compared with TIMS.

  • PDF

Sr and Pb Isotopic Properties in Limnetic Gastropod (Semisulcospira libertina) Shell in the Jinan, Jeonbuk Area. (하천에 서식하는 민물고동(다슬기)의 Sr, Pb 동위원소 특성)

  • Jeon Seo-Ryeong;Chung Jae-il
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.129-134
    • /
    • 2005
  • The $^{87}Sr/^{86}Sr$ ratios between water and biogenic material are similar in marine and lacustrine environment. Pb isotope ratios we, however, reported not to have been corresponding between the biological tissues and ambient water in aquatic system, contrary to the Sr isotope ratios. In order to explore the potential application of two isotopes as environmental tracers, we report here the isotopic compositions of strontium and lead of gastropod shell in fresh water in Jinan area. The $^{87}Sr/^{86}Sr$ ratios of carbonate shells of gastropod living in fresh stream water, are similar as that of ambient water but are different by sites. The different $^{87}Sr/^{86}Sr$ ratios of stream water between the sites is likely caused by the difference of the isotopic composition of Sr derived form rocks in the basin. In contrast, there is a distinct difference of the lead isotopic values between the water and the gastropod shell, suggesting that shell-fish available lead in aquatic system is different from dissolved lead in water. It is assumed that the majority of Pb in stream water is derived from atmospheric Pb accumulated on soil materials over years rather than from rock.

Pb-Pb Age of Marble from Muju, Korea (무주지역 대리암의 Pb-Pb 연대)

  • Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.84-88
    • /
    • 1996
  • Pb isotope composition is analyzed from the rock chips of marbles intercalated between gneisses of Muju area and it shows very large variation ($^{206}Pb/^{204}Pb$=23.74~4142, $^{207}Pb/^{204}Pb$=16.32~18.43, $^{208}Pb/^{204}Pb$=36.42~39.75). The data points form well defined positive relationship on $^{206}Pb/^{204}Pb$ vs $^{207}Pb/^{204}Pb$ plot, which corresponds to $1.99{\pm}0.10$($2{\sigma}$) Ga. This age is very similar to the formation ages of the granitic gneisses from Buncheon and Cheondongri (Tanyang), and suggests that the fairly large volume of Sobaeksan Massif suffered regional metamorphism at this time. It is suggested that the most parts of Korean peninsula including Kyeonggi and Sobaeksan Massifs were very close each other and experienced a regional metamorphism together about 2.0 Ga ago from the fact that galenas from whole Korean Peninsula except Kyeongsang Basin and metamorphic rocks from Kyeonggi Massif also reveal a similar slope corresponding 2.0 Ga on Pb-Pb isotope plot.

  • PDF

Lead Isotopic Study on the Dongnam Fe-Mo Skarn Deposit (동남 스카른 광상에 대한 납 동위원소 연구)

  • Chang, Ho Wan;Cheong, Chang Sik;Park, Hee In;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 1995
  • In Dongnam area, Cretaceous igneous rocks, such as diorite, porphyritic granite, and quartz porphyry intruded Paleozoic sedimentary rocks, such as Myobong slate and Pungchon limestone. The Dongnam Fe-Mo skarn deposits were imposed on the diorite(endoskarn) and the Myobong slate(exoskarn). The ore deposits consist mainly of magnetite and molybdenite with small amounts of sulfides, such as galena, sphalerite, pyrite, chalcopyrite, and pyrrhotite. The igneous rocks show nearly constant $^{206}Pb/^{204}Pb(18.80{\sim}19.06)$ and $^{207}Pb/^{204}Pb(15.71{\sim}15.72)$ ratios. Their $^{207}Pb/^{204}Pb$ ratios higher than the typical ratios of orogene suggest that the igeneous rocks were formed from lower crust(or mantle) - derived magma excessively contaminated by upper crustal materials such as high radiogenic Precambrian basement rocks. The lead isotopic compositions of the igneous rocks, the Pungchon limestone, and the ore minerals show a well defined linear in $^{206}Pb/^{204}Pb$ - $^{207}Pb/^{204}Pb$ plot. The lead isotopic compositions of the igneous rocks are similar to those of magnetite and galena, which were formed at early skarn stage and significantly lower than those of altered quartz porphyry, molybdenites, and pyrite, which were formed at late epithermal alteration stage. Considering the systematic variation of the lead isotopic compositions in the ore minerals according to hydrothermal stages, the variation may be due to a relative variation in surrounding rock(Pungchon limestone) involvement in hydrothermal ore solution leaching the surrounding rock. Therefore, the variation of the lead isotopic compositions in ore minerals can be modeled in terms of the mixing of the leads derived from the igneous rocks as low radiogenic source and the surrounding rock(Pungchon limestone) as high radiogenic source.

  • PDF

Characterization of lead isotope emission profiles in non-ferrous smelters in South Korea (국내 비철금속 제련시설에서의 납 동위원소 배출특성 연구)

  • Park, Jin-Ju;Kim, Ki-Jun;Park, Jin-Soo;Yoo, Suk-Min;Park, Kwang-Soo;Seok, Kwang-Seol;Shin, Hyung-Sun;Song, Guem-Joo;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.333-339
    • /
    • 2013
  • This study was conducted to build up the inventories of Pb isotopic compositions of major Pb pollution sources in South Korea. Since non-ferrous metal smelters are one of major anthropogenic sources, two smelters for zinc, each one of smelter for lead and copper were selected for the study. The Pb concentrations and isotopic compositions of metal ores, wastewater, sludge, metal rod and produced sulfuric acid were analysed to understand the Pb isotopic patterns in environment. The isotopic ratio, $^{206}Pb/^{207}Pb$, of zinc ores from zinc smelter were in the range of 1.179~1.198 and the ratio of waste, flue gas and products samples were 1.105~1.147. This results implied that the isotopic patterns of output samples showed mixing patterns between two distinct metal ore soerces. In 2011, major importing countries of zinc ore were Australia, Peru and Mexico. Thus Pb isotopic patterns from zinc smelter is originated from the mixing patterns between less radiogenic Australian ores and more radiogenic South America's ores. Lead smelters also showed the same mixing patterns with those of zinc smelters. However copper smelter showed same Pb isotopic patterns with more radiogenic South America's ores.

Lead Isotope Study on Lead-Zinc Ore Deposits in the Eastern and Southern Parts of the Gyeongsang Basin (경상분지 동남부 연 · 아연광상에 대한 납 동위원소 연구)

  • Chang, Byung Uck;Chang, Ho Wan;Cheong, Chang Sik
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 1995
  • Based upon the lead isotopic compositions of the galenas collected from Pb-Zn ore deposits distributed in the eastern and southern parts of the Gyeongsang basin, we investigated what kinds of source materials were involved in the formation of these ore deposits and compared the lead isotopic characteristics of these ore deposits with those of the ore deposits in the Taebaegsan area. The isotopic compositions of the common leads from Pb-Zn ore deposits in the Gyeongsang basin show the variation with the relatively limited range ($^{206}Pb/^{204}Pb=18.156{\sim}18.377$, $^{207}Pb/^{204}Pb=15.482{\sim}15.638$, and $^{208}Pb/^{204}Pb=37.953{\sim}38.605$). They are plotted on or below ore lead growth curve(Cumming & Richards, 1975) and average crustal lead evolution curve (Stacey & Kramer, 1975). In the plumbotectonic model IV(Zartman & Haines, 1988), they are plotted between the evolution curves of mantle and orogene. But the lead isotopic compositions of the common leads in the Taebaegsan area are plotted on and above upper crust curve. Considering the above-mentioned lead isotopic characteristics, the linear trend shown in the isotopic compositions of the common leads in the Gyeongsang basin can be considered as the mixing isochron between high radiogenic crustal materials such as the Ryongnam massif and low radiogenic materials derived from depleted mantle or materials with relatively low U/Pb and Th/U ratios.

  • PDF

Precambrian Kyeonggin gneiss complex (선캠브리아 경기육괴 중 대리암의 연대측정에 대한 예비연구)

  • 박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 1993
  • Kyeonggi Gneiss complex forming Korean Precambrian basement is mainly composed of high-grade metasedimentary rocks, which are generally difficult to determine their absolute ages. We examined the feasibility of successive absolute age determination method for the marbles from this basement. We used hydrochloric acid for the selective dissolution of carbonate minerals from the marbles. Trace element analysis shows that most of Zr and Rb are concentrated in the residues. U in the residue is more abundant than that in HC1-dissolved parts. Pb, Sr, Sm, and Nd are somewhat evenly distributed between HC1-dissolved parts and the residues. }Th shows rather complex behavior. Sr isotopic compositions of the HC1-dissolved parts reveal mixing with Sr from non-carbonate minerals having much higher $^{87}Sr/^{86}Sr$ ratios. We suggest that the most reliable method in the age determination for the marbles of this area is measuring Pb isotopic ratios of the pieces of pure marbles.

  • PDF

Geochemical Study on the Genesis of Chuncheon Nephrite Deposit (춘천 연옥의 기원에 관한 지구화학적 연구)

  • 박계현;노진환
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • To reveal the origin of the Chuncheon nephrite deposit, radiogenic isotopes of Sr and Pb, stable isotopes of 0 and H, and rare earth elements concentrations were analyzed. Such geochemical data were integrated to track the stepwise changes during the various ore formation stages. All the samples from the nephrite deposit have significantly low 0 isotopic ratios compared with the marble from which they had been formed, which reflects the very important role of the crustal circulating water with low 6180 and 6D in every stage of ore formation. There were progressive decrease of 6180 and 6D during the genesis of Chuncheon nephrite deposit. Newly formed minerals during the ore formation reveal disequilibrium with existing minerals in the respect of 0 isotope, which suggests that the ore-forming fluid of circulating water origin was involved with significant water-rock ratios in every step of ore formation process. The ore samples have Sr and Pb isotopic ratios similar to the values of Kyeonggi gneiss complex within which the deposit is located, which also suggests the important role of crustal circulating water in the genesis of the deposit. In conclusion, all the geochemical data support that major portion of the ore-forming fluid of Chuncheon nephrite deposit was derived ultimately from the surface water of meteoric origin. The meteoric water supplied Sr and Pb through leaching the rocks surrounding the ore deposits.

  • PDF

Sources Identification of Anthropogenic Pb in Ulleung Basin Sediments using Stable Pb Isotope Ratios, East/Japan Sea (동해 울릉분지 시추 퇴적물에서 안정 Pb 동위원소를 이용한 Pb의 기원 추정)

  • Choi, Man-Sik;Uoo, Jun-Sik;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.315-327
    • /
    • 2007
  • This study investigated temporal and spatial variation of Pb and stable Pb isotopes accumulated in Ulleung Basin core sediments (4) using MC ICP/MS in order to identify the sources of anthropogenic Pb in the East/Japan Sea. Leached (1M HCl) Pb concentration and isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were nearly constant during 300 yrs past than 1930, but increased up to twice in concentration and as much as 3.41% (1.70%) after 2000. On the other hand, residual Pb concentrations were nearly constant for past 400 yrs. The accumulation rates of anthropogenic Pb in the basin area were in the range of $3.1-3.5mg/m^2/yr$, which were similar levels to total atmospheric Pb deposition fluxes from 1990s to the present. In the slope area, more increase of anthropogenic Pb accumulation than the levels expected from mass accumulation rate could be found after the middle of 1990s. From the detailed evaluation for the temporal and spatial variation of accumulation rate and isotope ratios of anthropogenic Pb, we proposed probable sources and pathways of anthropogenic Pb. Pb emmision by coal burning from the China and Korea initiated the accumulation of anthropogenic Pb in the sediments of East/Japan Sea from 1930s. The accumulation of Pb increased by the addition of anti-nocking agents from both countries untill the beginning of 1990s, but from the middle of 1990s to the present, the phase-out of gasoline additives and the rapid increase of coal burning from the China maintained the atmospheric Pb levels in the Ulleung basin nearly similar to before. However, the local sources within this basin might take an important role in the rapid increase of anthropogenic Pb accumulation in slope areas from the middle of 1990s.

Evaluation of Airborne Pb Sources in an Industrialized City by Applying Pb Isotope Ratios and Concentrations in PM10 (PM10 내 납의 동위원소와 농도를 활용한 산업도시지역 대기 중 납 오염원 평가)

  • Jo, Wan-Kuen;Lee, Heon-Chul;Kim, Mo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The present study evaluated the major lead sources in a steel metallurgy industrialized city by measuring lead isotopes/lead concentrations of ambient air and potential sources in an industrial area and residential areas according to relative distance. The quality control program obtained during the measurement procedure for lead isotopes and concentrations exhibited $0.5ng/m^3$ for method detection limit, more than 90% for recoveries of standard particulate matters, and lower than 0.2% for reproducibility errors of four lead isotopes ($^{204}Pb$, $^{206}Pb$, $^{207}Pb$, $^{208}Pb$). For all three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$), the ratios were obtained in the industrial area were closer to nearby residential area than those of a residential area far away from the industrial area, thereby suggesting that lead sources were more similar each other in the industrial and nearby residential area. Furthermore, for both summer and winter seasons ambient lead concentrations were more than four times higher in the industrial area than in the residential areas and in turn, they were higher in the nearby residential area compared with the far-away residential area. As a result, it was suggested that lead emitted from the industrial area would influence more the ambient lead in the nearby residential area than the far-away residential area. Both slag and traffic emissions are likely to be major lead sources in the industrial and nearby residential areas, since their three lead isotope ratios ($^{206}Pb/^{204}Pb$, $^{207}Pb/^{206}Pb$, $^{208}Pb/^{206}Pb$) were similar to the ratios obtained from ambient air of these two areas. In addition, the lead isotope ratios revealed different pattern between seasons, and the ambient lead concentrations were higher for winter than for summer.