• 제목/요약/키워드: Payback period method

검색결과 38건 처리시간 0.037초

투자비회수기간 분석에 의한 단독주택용 PV설비 보급방안 (Supply Method of Photovoltaic Equipment for Detached Houses Using Payback Period Analysis)

  • 강석화;김재엽
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.154-155
    • /
    • 2014
  • Small photovoltaic equipment spreads to the detached house owing to the support of government. This study analyzed the payback period of small photovoltaic equipment, and presented a plan of spreading PV equipment by electricity consumption according to the results. The results of payback period analysis showed that a household of 500kWh or above in the average monthly electricity consumption could produce an economic effect without the subsidies of government, and a household of 300kWh or above could secure economical efficiency in case of receiving the subsidies of government and municipality. However, it was shown that the economic effect was not large in case of a household of less than 250kWh. Therefore, the analysis showed that it would be necessary to be supported by additional subsidies or to develop a new supporting policy with regard to a household of less than 250kWh.

  • PDF

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.

지하철배열 이용 시스템의 경제성 평가 (Feasibility study on waste heat utilization system in subway)

  • 이철구;김종대;임태순;방승기;함흥돈
    • 한국지열·수열에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.59-64
    • /
    • 2011
  • Feasibility study on energy saving system by utilizing exhausted heat from subway, which is one of the unused energy, was carried out. General heat source system using absorption chiller-heater was used for comparing to the energy saving system, and payback period method using initial cost and running cost of two systems, was used to perform economic estimation. Payback period was about ten years, and this period might be shortened if nation's economic support enact.

투자회수기간을 고려한 군 주거시설의 단열수준 산정 연구 (Insulation Level Assessment on the Military Residential Facilities Considering the Investment Payback Period)

  • 박영준;맹준호;김태희;김성중;이승민;손기영
    • KIEAE Journal
    • /
    • 제15권6호
    • /
    • pp.57-62
    • /
    • 2015
  • Purpose: This study, which is based on the investment payback periods, aims to suggest the proper insulation level which can be adapted to the Defense Military Facility Criteria regarding the military residential condominiums. For the energy performance simulation, it is required to collect the residential data regarding the military condominiums and climatic data concerning the regions they belongs to. The estimates through energy performance simulation are the regional heating loads and the heating transmission coefficients of building components. Method: With the heating loads, the annual heating cost saving per square meters is assessed. With the heating transmission coefficients of building components, the additional insulation installment cost per square meters is evaluated. With two outcomes, one as an annual value and the other as a present value, the investment payback period is calculated. Result: In result, it could be concluded that 55~70% insulation ratio can lead a superior residental environments as well as be contributed to the national policy associated with zero-energy buildings because the estimated investment payback period is shorter than the life span of the military residental condominiums. This upshot can be used as a foundation to enactment the Defense Military Facility Criteria associated with military residential condominiums.

하천수 이용 열원시스템의 경제성 평가 (Economic Evaluation on Energy System Using River Water)

  • 이철구;김종대;임태순;최명식;방승기;함흥돈
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.25-31
    • /
    • 2013
  • It has become very important for unused energy to be used for building air conditioning. Economic evaluation on energy system by using river water as a heat source, which is one of the unused energy, was carried out. The floor area of the building and the distance between heat source equipment and river was assumed $50,000m^2$ and 200 m. General heat source system using absorption chiller-heater was used for comparing to the energy saving system, and payback period method using initial cost and running cost of two systems, was used to perform economic evaluation. According to development of high capacity of water source heat pump which is appropriate for using river water, initial cost for the system has been reduced. Payback period was about 3.2 years, and this period might be shortened if nation's economic support enact.

하수처리수 이용 열원시스템의 경제성 평가 (Economic Evaluation on Energy System Using Treated Sewage Water)

  • 이철구
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.16-22
    • /
    • 2017
  • It has become important for unutilized energy to be used for air conditioning of building. Economic evaluation on energy system by using treated sewage water as heat source, which is one of unutilized energy, was performed. The floor area of the subject building and the distance between heat source equipment and sewage treatment plant was assumed $30,000m^2$ and 200m. Absorption chiller-heater system was used for comparing to the energy efficient system, and payback period method was applied to carry out economic evaluation. Although the operating cost of this system is reduced compared to general heat source system, the ratio is not meaningful compared to the initial investment cost increase, and payback period was calculated to be about 36.1 years. However, when calculated based on the 2014 rate of electricity and city gas, it will be greatly reduced to 3.1 years. International commodity prices are constantly changing, and therefore national policy on the spread of unutilized energy should be maintained.

축열식 열원시스템 적용에 의한 전력부하 평준화의 경제성 검토 (Feasibility Study on Leveling Method of Electric Power Load by Applying Thermal Storage Air Conditioning System)

  • 이철구
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.9-17
    • /
    • 2019
  • Reducing global warming potential has become important, and as one of those methods for reducing it, economic evaluation by applying ice thermal storage air conditioning system was performed. The floor area and height of the subject building was assumed $5,000m^2$ and 20 m. Absorption chillerheater system and air source heat pump system was used for comparing to the subject system, and payback period method was used to perform economic evaluation. Although the running cost of ice thermal storage system is reduced compared to two systems, the ratio is not significant compared to the increase of initial construction expenses, and payback period was calculated to be about 7.7 and 79.3 years. However, the heat storage system should be approached from the viewpoint of long term rather than the economic standard in the present standard.

투자비회수기간법을 이용한 공공청사 적용 축열식 지열히트펌프 시스템의 경제성 평가 (Economic Estimation of Heat Storage Type Geothermal source Heat Pump System Adopted in Government office Building by a Payback Period Method)

  • 고명진;오중근;김용인;김용식
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.175-182
    • /
    • 2007
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. As a result Geothermal Source Heat Pump System (GSHPs) was being recognized effective alternative systems to conventional heating and cooling systems owing to their higher energy utilization efficiency. But GSHPs has not been popularized thereby the large amount of initial cost of the system and insufficiency of studies for economic estimation. Therefore GSHPs are being developed to make up for the weak points that are the large amount of initial cost of the system and much annual electricity consumption. In this paper, economic estimation was conducted by payback period method and it shows that the pay back period of Heat Storage Type GSHPs was calculated 6.8 years compared with the absorption Chiller-Heater system and 8.2 years compared with the Ice storage-Boiler system. Heat Storage Type GSHPs also has the lower annual source energy consumption than the conventional heating and cooling systems because of using nighttime electricity.

ESS 적용에 따른 원금회수 기간 분석에 관한 연구 (Study on payback period analysis of an ESS application)

  • 채희석;강병욱;홍종석;문종필;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.611-612
    • /
    • 2015
  • Prediction algorithm of the energy storage system in accordance with the load pattern can cause economic loss in case of a failure prediction. In this paper, we compare the electricity charge between industrial power system with ESS - this case's operation is based on Non-prediction operation method. - and without ESS. In addition, we derive the payback period.

  • PDF

급수제어장치 설치에 따른 건축물의 에너지 효율 및 경제성 평가 (A Study on Economic Evaluation and Energy Efficiency for the Installation of Water Control Device in Building)

  • 박강현;차정훈;김수민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.338-341
    • /
    • 2011
  • Water usage for cleaning the toilet bowl accounts for 27% of the total water usage. Water-saving valve that can select the amount of water for cleaning toilet bowl can be reduced expenditure. After installing water-saving valve, analysed the economic effects. Water-saving valves compared with flush valves, and researched the amount of water usage. Then analyzed fort he economic effects. Water-saving valve was used 5.6 ${\ell}/time$ for cleaning toilet bowl. In contrast, flush valve was consumed 8.4 ${\ell}/time$. Water-saving valve's water-saving rate was 33.3%. The initial payback period for Water-saving valve was 459.5 days. By a small investment in water saving valve, the economic benefits can be obtained.

  • PDF