• Title/Summary/Keyword: Pavement thickness design

Search Result 61, Processing Time 0.026 seconds

Investigation of Slab Thickness Influence on Prestressing Design of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장 긴장 설계에 대한 슬래브 두께의 영향 분석)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2009
  • This study was conducted to investigate the effect of the slab thickness on the tensioning design and to determine the optimal slab thickness of the post-tensioned concrete pavement (PTCP). The tensile stresses due to the vehicle and environmental loads were obtained using a finite element analysis model and the tensioning stress was calculated employing an allowable flexural strength. The environmental loads of both the constant temperature gradient and the constant temperature difference between top and bottom of the slab were considered. The tensioning designs for various slab thicknesses were performed considering prestressing losses. The comparison results showed that generally as the thickness increased, the number of tendons became larger. Consequently, the design was not economical for a thicker slab thickness. Even though the number of tendons became smaller with an increase in the thickness under the small environmental load, a thicker PTCP slab was not economical because of a higher cost of concrete than that of steel. Therefore, the slab thickness should be kept in minimum within the construction available thicknesses.

  • PDF

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

A Method for Customizing Flexible Pavement Design Parameters for EDCF-Funded Projects in Asia (아시아 지역 EDCF 사업의 가요성포장 설계 계수 적용방안)

  • Shim, Cha-Sang;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.21-31
    • /
    • 2017
  • PURPOSES : One of the main components of road projects funded by the Economic Development Cooperation Fund (EDCF) is the improvement or rehabilitation of existing pavements. The result is that pavement structures are critical to the success of a project. There is, however, no design standard available at present that reflects a region's specific features including climate conditions and quality of pavement materials. For this reason, a comparative study of the major EDCF borrowers' flexible pavement design standards was conducted. This study led to the proposal of a new method for applying flexible pavement designs which can be used for EDCF-funded projects in Asia. METHODS : The method has been produced by adjusting some input data of the "AASHTO Interim Guide for Design of Pavement Structures" in accordance with certain Asian countries' geometrical features, tropical and subtropical weather, and strength of pavement materials. The Philippine regional factors, having five different grades, have been selected after taking into consideration the amount of rainfall, strength of pavement materials, and characteristics of the Asia and Pacific regions. Structural layer coefficients have been prepared for two different regions according to the geometric difference between Southeast and Southwest Asia. The Philippine and Sri Lankan coefficients have been used for Southeast Asia and Southwest Asia, respectively. CONCLUSIONS : Owing to applying this new method, it was verified that the thickness of the pavement was underestimated by between 11 cm and 16 cm compared with the originally designed thickness. Having discovered that the use of the Korean and American-oriented factors and coefficients is not appropriate for other Asian countries, the new method is expected to enhance the quality of pavement in future projects.

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

Analisys on Freezing Characteristics of Pavement Layer Using the Feild Pavement Model test (현장 모형 도로 축소 실험을 이용한 포장구성층의 동결 특성 분석)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Moon, Yong-Soo;Park, Jeong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1164-1171
    • /
    • 2010
  • Korea is considered to be a seasonal frozen soil area that is thawed in the spring, and most of the area is frozen in winter as to the characteristic of geography. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this research, the evaluation of frost susceptibility on subgrade, ant-freezing layer, sub base was conducted by means of the mechanical property test and laboratory field road model downed scale experiment. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade, anti-freezing layer, sub base soils of highway construction site, were measured to determine the frost susceptibility.

  • PDF

Preliminary Investigation of Pavement Adjustment Concepts for Slab Thickness Deficiency in Portland Cement Concrete Pavement (콘크리트 포장의 슬래브 두께 손실에 대한 지불규정 기준 정립을 위한 기초연구)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.141-151
    • /
    • 2007
  • The current standards and specifications for the road pavement construction have been developed based on materials and construction methods. The pavements constructed in accordance with those specifications do not guarantee high performance of pavements since they do not consider long-term performance of pavements. Therefore, as part of the study to develop performance-based construction standards for pavements, the payment adjustment methods based on the pavement performance are currently being developed. This paper presents preliminary studies performed to develop the payment adjustment methods when there is deficiency in the concrete slab thickness that is one oi the most important factors for the pavement design and construction. First, the payment adjustment methods in USA were investigated. Then, the AASHTO failure equation, the relationship between slab thickness and stress, and the relationship between stress level and pavement life were employed to propose the payment adjustment concepts based on the pavement performance for the deficient slab thickness. The variation in the slab thickness according to measurement locations was investigated by taking cores. In addition, the measurement methods of slab thickness and the variation of measured thicknesses depending on performers were analyzed, and finally the methodology to develop the thickness deficiency ranges for the use in the payment adjustment methods was proposed.

  • PDF

Improvement of a Decision Tree for The Rehabilitation of Asphalt Pavement in City Road (도심지 아스팔트 포장의 유지보수공법 의사결정 절차 개선)

  • Park, Chang Kyu;Kim, Won Jae;Kim, Tae Woo;Lee, Jin Wook;Baek, Jong Eun;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting. METHODS : To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS :In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used. CONCLUSIONS:A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.

A Study on the Structural Design of Permeable Asphalt Pavement (투수성 아스팔트포장 구조설계방법에 관한 연구)

  • Lee, Soo-Hyung;Yoo, In-Kyoon;Kim, Je-Won
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.39-49
    • /
    • 2011
  • The porous pavement system is widely considered very effective in urban street because of its various benefits on safety and environment, but the pavement thickness design system has not been established yet. In porous pavement system. rainwater penetrates to the subgrade through porous pavements layers. Porous pavements are expected to reduce or alleviate the problems caused by impermeable pavement layer such as flood damage due to heavy rain in the city, drainage load, disorder in ecosystem, and heat island. However, its structural design methods in traffic roads has not been made mainly because of not being able to consider adequately the effect of rainwater on subgrade strength. In this study, structural design method of porous pavements is suggested after considering the subgrade weakness due to rainwater and numerical mechanical analysis. It is noted that elastic modulus of subgrade is reduced by 20% as subgrade moisture content is increased by 2% at optimum moisture content in the literature review. As a result of both finite element analysis and strength loss of subgrade by the existing design method, it is necessary to increase subbase thickness about 30cm in porous pavements compared with the existing traffic road pavement system. It is similar to premium thickness of structural design of porous pavements in Japan.

Estimation of the Mean CBR for the Subgrade Layer Including the Anti-Frost Layer (동상방지층을 포함한 노상층의 평균 CBR 산정에 관한 연구)

  • Min, Gyeong-Ho;Lee, Cheo-Keun;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • Generally, the California Bearing Ratio(CBR) for the material of subgrade is estimated without considering the anti-frost layer into the subgrade layer when pavements are designed. A pavement structure is determined according to the CBR. However, recently the design method taking the anti-frost layer into the subgrade layer is getting prevail. It makes the top of the subgrade layer strengthen and the thickness of the road pavement structure decreased. By the way, some confusion may be caused because theoretically the general equation for the mean CBR to combine the material of the subgrade layer and anti-frost layer have not been developed well. In this paper, laboratory and field CBR tests were performed to estimate of the mean CBR for the subgrade layer including the anti-frost layer. From the basis of the test results, modified equation which is calculating the mean CBR of the subgrade layer has been proposed. Finally, economical efficiency was considered by comparing the pavement thickness with the road pavement design using CBR of the subgrade layer alone and the road pavement design using the mean CBR including the anti-frost layer.

  • PDF

Establishment of Failure Criteria of Repeated Direct Tensile Test to Evaluate Reflective Cracking Resistance of Asphalt Concrete Pavement (아스팔트 콘크리트 포장의 반사균열 저항성 평가를 위한 반복직접인장시험의 파괴기준 설정)

  • Lee, Bong Lim;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1109-1116
    • /
    • 2016
  • There are various test methods for evaluating the reflective cracking resistance of asphalt concrete pavement. Repeated direct tensile test is cheap and simple compared to the other traditional experimental methods. Determination of failure criteria is needed to apply a repeated direct tensile test. Various methods were used to determine the number of failure of repeated direct tensile test. The number of failure was defined as the time to reach 10% of the initial load, this method can be satisfied with specified tolerance of 10%. When the thickness of specimen is increased to 50 mm from 30 mm, the failure number is increased by 13.6 times. Thus, this result shows that the thickness of pavement is a big influence on the reflective cracking resistance. Reflective cracking resistance of asphalt concrete is decreased according to the increase in opening displacement. The repeated direct tensile test can be used as a reflective cracking resistance factor in pavement design, because it can evaluate the reflective cracking resistance according to the pavement thickness, opening displacement, material properties etc.