• 제목/요약/키워드: Pavement crack

검색결과 186건 처리시간 0.022초

Guidelines for Joint Depth Determination and Timing of Contraction Joint Sawcutting for JCP Analyzed with Fracture Mechanics

  • Yang, Sung-Chul;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.145-150
    • /
    • 2006
  • An experiment with the objective of providing guidelines for joint depth determination and timing of contraction joint sawcutting to avert uncontrolled cement concrete pavement cracking has been conducted. Theoretical analysis and laboratory tests were performed to help in understanding and analyzing the field observation. Using two-dimensional elastic fracture mechanics, the influence of several parameters on crack propagation was delineated by a parametric study, involving initial notch ratio, joint spacing, Young's modulus and thermal expansion coefficient of concrete, temperature gradient, and modulus of subgrade reaction. Bimaterials made of rock plus cement mortar and rock plus polymer mortar were applied to the concrete in a field test section, and they were subjected to fracture tests. These tests have shown that fracture mechanics is a powerful tool not only in judging the quality of the jointed cement concrete pavement but also in providing a criterion for crack propagation and delamination. Based on fracture mechanics, a method is proposed to determine the joint depth, sawcut timing, and spacing of the jointed cement concrete pavement. This method has successfully been applied to a test section in Seohaean expressway. This study also summarizes the research results obtained from a field test for jointed plain concrete pavement, which was also carried out on the Seohaean expressway.

일반국도 현장조사 모니터링을 통한 장수명 아스팔트 덧씌우기 포장의 공용성 분석 (Performance Evaluation of Long-Life Asphalt Concrete Overlays Based on Field Survey Monitoring in National Highways)

  • 백종은;임재규;권수안;권병윤
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.69-76
    • /
    • 2015
  • PURPOSES : Performance evaluation of four types of asphalt concrete overlays for deteriorated national highways. METHODS : Pavement distress surveys for crack rate and rut depth have been conducted annually using an automated pavement survey vehicle since 2007. Linear and non-linear performance prediction models of the asphalt concrete overlays were developed for 43 sections. The service life of the asphalt overlays was defined as the number of years after which a crack rate of 30% or rut depth of 15mm is observed. RESULTS : The service life of the asphalt overlays was estimated as 17.4 years on an average. In 90.7% of the sections, the service life of the overlays was 15 years or more which is 1.5 times the life of conventional asphalt concrete overlays used in national highways. The performance of the overlays was dependent on the type of asphalt mixture, traffic volume levels, and environmental conditions. CONCLUSIONS : The usage of stone mastic asphalt (SMA) and polymer-modified asphalt (PMA) for the overlays provided good resistance to cracking and rutting development. It is recommended that appropriate asphalt concrete overlays must be applied depending on the type of existing pavement distress.

무근 콘크리트포장 초기균열 거동 연구 (Behaviors of Early-Age Cracks on the JCP)

  • 박대근;서영찬;안성순;김형배
    • 한국도로학회논문집
    • /
    • 제6권2호
    • /
    • pp.47-59
    • /
    • 2004
  • 콘크리트포장에 초기균열을 일으키는 중요한 인자 중 하나는 콘크리트 내부의 초기온도이다. 따라서 콘크리트포장의 초기균열 발생원인을 연구하기 위해서는 초기온도를 계측하여 분석하는 일이 필요하다. 본 논문에서는 초기균열이 발생하는 슬래브 장소와 초기균열의 발생시간이 초기온도패턴에 어떤 영향을 받는지를 검증하였고 더불어, 줄눈부에서 발생하는 균열의 발생시점과 시공시간과의 관계도 알아보았다. 본 논문을 위해서 "중부내륙고속도로 여주-충주간 제 1공구 시험도로 건설공사구간 STATION 1+400$\sim$1+700" 지점에서 시험시공이 이루어졌으며, 시공 후 72시간 동안 i-Button(온도계측센서)을 이용하여 온도계측을 시행하였으며, 초기균열의 거동은 Demec gauge를 사용하였으며, 초기균열 및 줄눈부 균열은 육안으로 확인하였다. 초기온도패턴과 초기균열의 분석 결과, 콘크리트의 초기온도패턴은 슬래브에 초기균열이 발생하는 위치와 시각에 영향을 주는 것으로 나타났다 초기균열균열은 온도낙차폭이 가장 큰 슬래브에서 발생하였으며, 그 시각은 슬래브의 온도가 급강하하는 새벽이었다. 또한, 콘크리트 슬래브의 거동이 인근 줄눈부에 발생한 초기균열에 따라 영향을 받으며. 줄눈부에 발생한 균열의 발생시기가 서로 다를 경우에 균열의 거동이 달라질 수 있다는 가능성이 제시되었다. 그 외에도, 오전에 시공한 슬래브에서의 균열 발생률이 오후에 시공한것보다 더 큰 것으로 나타났으며, 균열의 발생 간격이 큰 균열이 그렇지 않은 균열보다 더 큰 균열틈을 보였다.

  • PDF

이미지프로세싱을 이용한 도로포장의 균열폭 측정에 관한 연구 (Measurement of Crack Width of Pavements Using Image Processing)

  • 고지훈;서영찬
    • 한국도로학회논문집
    • /
    • 제4권2호
    • /
    • pp.33-42
    • /
    • 2002
  • 포장은 건조수축이나 온도변화 또는 차량의 반복하중 등으로 인하여 균열이 발생하게 된다. 발생된 균열 부위로 우수의 침입 및 비압축성 물질이 침투하여 하부층의 지지력 저하, 과다한 스폴링, 2차 균열 등의 파손이 발생하게 된다. 이런 문제점을 해소하기 위해서는 균열폭을 제한하여 관리해야하며 이것은 정확한 균열폭 감지를 필요로 한다. 현재의 측정방법은 공간적 시간적으로 많은 제약을 받는 현미경을 이용한 육안조사가 전부인 실정이다. 본 연구의 목적은 망원렌즈를 장착한 자동포장상태 조사장비를 사용하여 도로에서 주위차량과 비슷한 속도로 주행하면서 가장 정확한 균열폭을 감지할수 있는 조건을 찾는 것이다. 본 연구는 모의조사를 통하여 균열폭 크기에 따른 카메라 초점거리를 결정하고 망원렌즈를 부착한 카메라로 노면을 확대 촬영한 자료를 이미지프로세싱 프로그램인 STADI-2에서 여러 가지 factor를 사용하여 산출된 균열폭과 현장조사를 통하여 현미경으로 실측한 균열폭을 비교 분석한 결과, 이미지프로세싱을 이용한 최적균열폭 감지조건을 제시하였다. 연구결과 CRCP(연속철근콘크리트포장)에서는 카메라 초점거리 75mm를 사용하여 균열폭 0.5mm$\sim$1.2mm일때 정확도 80%이상으로 측정 가능했으며 아스팔트포장에서는 카메라 초점거리 12.5mm를 사용하여 균열폭 1.8mm$\sim$3.3mm에서 90%의 정확도로 균열폭을 감지할 수 있었다.

  • PDF

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • 토지주택연구
    • /
    • 제11권2호
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.

아스팔트 덧씌우기의 반사균열 지연을 위한 지오그리드의 적용성 연구 (Performance of Geogrids for Retarding Reflection Crack of Asphalt Overlay Pavement)

  • 김광우;도영수;김번창;이문섭
    • 한국도로학회논문집
    • /
    • 제7권2호
    • /
    • pp.1-12
    • /
    • 2005
  • 본 연구는 노후된 시멘트 콘크리트 포장 위에 덧씌운 아스팔트 혼합물의 반사균열 지연을 위하여 바인더 2가지 일반과 개질, 바닥 보강재로 그리드 3종류와 Fabric 2종류의 효과를 평가하기 위하여 수행하였다. 보강재는 공시체 제조시 미리 슬래브 몰드 바닥에 깔고 가열 아스팔트 혼합물을 몰드에 부은 후 다짐을 하여 아스팔트 슬래브 공시체와 일체화시켜 콘크리트 블록 위에 덧씌우기 형태로 택코팅하여 부착하였다. 본 연구를 위하여 휨파괴(mode I) 및 전단파괴(mode II)반사균열 시험을 수행하였다. 시험결과, 일부의 그리드의 보강이 휨파괴 및 전단파괴에 의한 반사균열의 지연에 효과가 있는 것으로 나타났다. 특히 LDPE 개질아스팔트와 함께 사용하면 반사균열 지연에 큰 효과가 있음을 알 수 있었다.

  • PDF

도로포장 보수용 상온식 균열실링 재료의 개발 및 평가 (Development and Evaluation of Cold-applied Crack Sealant for Pavement Maintenance)

  • 김영민;정규동;이강훈;임정혁
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.45-53
    • /
    • 2017
  • PURPOSES: The objectives of this study are to develop a new cold-applied crack sealant and to evaluate its properties and field applicability by comparing with other conventionally used crack sealants. METHODS : A new cold-applied crack sealant was developed by using neoprene latex to improve material properties. The fundamental properties such as viscosity, residue %, penetration, and softening point of the developed crack sealant were tested by TxDOT criteria to evaluate crack sealing capability. Moreover, the performance of the developed cold-applied crack sealant was evaluated under both laboratory and field conditions. In the laboratory, the bond property was evaluated using the developed cold-applied crack sealant and conventional hot-applied crack sealant by the bond-properties test standardized under ASTM D 6690. In the field, test sections were constructed on three areas: a trunk road, bus-only lane, and motorway, with the developed crack sealant and three conventional crack sealants. After construction, early field-inspection was performed on the test sections. RESULTS AND CONCLUSIONS : Overall, the developed cold-applied crack sealant demonstrates reasonable storage stability, durability, and bond property compared to conventional hot-applied crack sealants. From the test sections, it was established that the developed cold-applied crack sealant does not pose construction issues. Moreover, the early performance was verified through field inspection. However, as the field inspection was conducted a week after the construction, it is necessary to conduct an inspection of performance from a long-term point of view.

알칼리-골재 반응에 의한 무근콘크리트 포장의 파손 고찰 (An Investigation of AAR Distress in the Plain Concrete Pavement)

  • 홍승호;한승환;안성순;장태순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.98-101
    • /
    • 2003
  • The Alkali-Aggregate Reaction (AAR) may cause a serious failure in the concrete structures. Several researchers in some nations have performed the continuous studies to prevent failure of a concrete structures by the AAR distress as well as the studies to manifest the mechanism. The ASTM Standards to prevent failure by potential AAR aggregates were established in 1950. The KS F2545 and KS F 2546 were established to test the susceptibility of aggregate to potential AAR in 1982. But the researches on the AAR have not been performed affluently in Korea because the distress due to AAR has seldom been reported officially. In this study, the Chemical Method and Scanning Electron Microscopy (SEM) were used to verifying the cause of the pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to AAR, and the chemical method and SEM may be the effective tools for verifying the cause of AAR distresses.

  • PDF

연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법 (Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement)

  • 조영교;석종환;최린;김성민
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.