• Title/Summary/Keyword: Patterns of failure

Search Result 599, Processing Time 0.019 seconds

Literature review on the experimental method and interpretation of the edge chipping test (ECT) (Edge chipping test (ECT)의 실험방법과 해석에 관한 문헌고찰)

  • Song, Min-Gyu;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • In vitro studies are essential to predict the clinical performance of ceramic widely used as restorative materials. Traditional experiments such as fracture toughness and flexural strength have been used to evaluate the properties of brittle ceramics. However, these experiments have a limitation that the load conditions, failure patterns, and load values at which failure occurs are not similar to human occlusal force ranges or clinical failures. On the other hand, the edge chipping test (ECT), which was recently introduced to study chipping fracture of ceramics, has similar failure patterns to clinical trials. In addition, the failure loads from ECT were similar to human occlusal force. ECT can be usefully used in the study of ceramic properties. In this literature review, a more clinically meaningful experimental study of ceramics by examining the meaning and limitations of traditional ceramic failure tests and comparing them with ECT.

The optimum damper retrofit of cabinet structures by genetic (유전자알고리즘을 이용한 캐비닛 구조의 최적감쇠보강)

  • 이계희;최익창;하동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.379-386
    • /
    • 2004
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contained class 1 relays were studies in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed to the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by μ-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained in form of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The fitness function of the optimum procedure was constructed based on the ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness fur adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the damping exponents are proper.

  • PDF

The bending-shear-torsion performance of prestressed composite box beam

  • Wei, Hu S.;Yu, Zhao K.;Jie, Wei C.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.577-585
    • /
    • 2017
  • To study the mechanical performances of prestressed steel-concrete composite box beam under combination of bending-shear-torsion, nine composite beams with different ratio of torsion to bending were designed. Torsion was applied to the free end of the beam with jacks controlled accurately with peripherals, as well as concentrated force on the mid-span with jacks. Based on experimental data and relative theories, mechanical properties of composite beams were analyzed, including torsional angle, deformation and failure patterns. The results showed that under certain ratio of torsion to bending, cracking and ultimate torsion increased and reached to its maximum at the ratio of 2. Three phases of process is also discussed, as well as the conditions of each failure mode.

Numerical analysis of plasma-sprayed ceramic coatings for high-temperature applications

  • St. Doltsinis, Ioannis;Haller, Kai-Uwe;Handel, Rainer
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.679-702
    • /
    • 1996
  • The finite element method is employed in conjunction with micromechanical modelling in order to assess the performance of ceramic thermal barrier coatings applied to structural components. The study comprises the conditions of the deposition of the coating by plasma spraying as well as the thermal cycling of the coated component, and it addresses particularly turbine blades. They are exposed to high temperature changes strongly influencing the behaviour of the core material and inducing damage in the ceramic material by intense straining. A concept of failure analysis is discussed starting from distributed microcracking in the ceramic material, progressing to the formation of macroscopic crack patterns and examining their potential for propagation across the coating. The theory is in good agreement with experimental observations, and may therefore be utilized in proposing improvements for a delayed initiation of failure, thus increasing the lifetime of components with ceramic thermal barrier coatings.

A Development of the Algorithm to Detect the Fault of the Induction Motor Using Motor Current Signature Analysis (전류분석을 이용한 유도 전동기의 결함분석 알고리듬 개발)

  • 신대철;정병훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.675-683
    • /
    • 2004
  • The motor current signature provides an important source of the information for the faults diagnosis of three-phase induction motor. The theoretical principles behind the generation of unique signal characteristics, which are indicative of failure mechanisms, are Presented. The fault detection techniques that can be used to diagnose mechanical Problems, stator and rotor winding failure mechanisms, and air-gap eccentricity are described. A theoretical analysis is presented which predicts the presence of unique signature patterns in the current that are only characteristics of the fault. The predictions are verified by experimental results from a special fault Producing test rig and on-site tests in a steel company. And this study have made new diagnostic algorithm for the operating induction motors with the test results. These developments are including the use of monitoring and analysis of electric current to diagnose mechanical and electrical problems and gave the precise test results automatically.

Behavior of reinforced concrete segmental hollow core slabs under monotonic and repeated loadings

  • Najm, Ibrahim N.;Daud, Raid A.;Al-Azzawi, Adel A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.269-289
    • /
    • 2019
  • This study investigated experimentally the response of thick reinforced concrete specimens having hollow cores with critical parameters. The investigation includes testing of twelve specimens that are solid and hollow-core slab models. Each specimen consists of two pieces, the piece dimensions are (1.2 m) length, (0.3 m) width and (20 cm) thickness tested under both monotonic and repeated loading. The test program is carried out to study the effects of load type, core diameters, core shape, number of cores, and steel fiber existence. Load versus deflection at mid span, failure modes, and crack patterns were obtained during the test. The test results showed that core shape and core number has remarkable influenced on cracking pattern, ultimate load, and failure mode. Also, when considering repeated loading protocol, the ultimate load capacity, load at yielding, and ductility is reduced.

Gate Location Design of an Automobile Junction Box with Integral Hinges (복합힌지를 갖는 차량용 정션박스의 게이트 위치설계)

  • 김홍석
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.134-140
    • /
    • 2003
  • Polymers such as polypropylene or polyethylene offer a unique feature of producing an integral hinge, which can flex over a million times without causing a failure. With such advantage manufacturing, time and cost required at the assembly stage can be eliminated by injecting the whole part as one piece. However, due to increased fluidity resistance at hinges during molding, several defects such as short shot or premature hinge failure can occur with the improper selection of gate locations. Therefore, it is necessary to optimize flow balancer in injection molding of part with hinges before actually producing molds. In this paper, resin flow patterns depending on several gate positions were investigated by numerical analyses of a simple strip part with a hinge. As a result, we found that the properly determined gate location leads to better resin flow and shorter hesitation time. Finally, injection molding tryouts using a mold that was designed one of the proposed gate systems were conducted using polypropylene that contained 20% talc. The experiment showed that hinges without defects could be produced by using the designed gate location.

Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load (平坦氷荷重을 받는 細長形 해양구조물의 動的 거동)

  • Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

Safe Speed Limit of Robot Arm During Teaching and Maintenance Work (로보트 교시.정비작업시의 안전속도한계)

  • 김동하;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 1993
  • Serious injuries and deaths due to multi-jointed robot occur when a man mispercepts. especially during robot teaching and maintenance work. Since industrial robots often operate with unpredictable motion patterns, establishment of safe speed limit of robot arm is indispensable. An experimental emergency conditions were simulated with a multi-jointed robot. and response characteristics of human operators were measured. The result showed that failure type, robot arm axis. and robot arm speed had significant effects on human reaction time. The reaction time was slightly increased with robot arm speed. though it showed somewhat different pattern owing to failure type. Furthermore the reaction time to the axis which could flex or extend. acting on a workpiece directly. was fastest and its standard deviation was small. The robot arm speed limit securing a‘possible contact zone’based on overrun distance was about 25cm/sec. and in this sense the validity of safe speed limits suggested by many precedent researchers were discussed.

  • PDF

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가)

  • Moon, Hong Bi;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.