• Title/Summary/Keyword: Patterned thin films

Search Result 122, Processing Time 0.021 seconds

Homogeneously Dispersed Silver Nanoparticles on the Honeycomb-Patterned Poly(N-vinylcarbazole)-cellulose triacetate Composite Thin Films by the Photoreduction of Silver Nitrate

  • Kim, Kwang Il;Basavaraja, C.;Huh, Do Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1391-1396
    • /
    • 2013
  • The photocontrolled reduction of silver nitrate to silver (Ag) nanoparticles on honeycomb-patterned poly(N-vinylcarbazole) (PVK)-cellulose triacetate (CTA) composite thin films was studied. The composites were prepared via the oxidative polymerization of N-vinylcarbazole with ferric chloride using different CTA concentrations. A honeycomb-patterned film was fabricated by casting the composite solution under humid conditions. Ag particles with a homogeneous distribution were produced by the composite film in a moderate CTA concentration, whereas aggregated Ag was obtained from the pure PVK film.

Enhanced effect of magnetic anisotropy on patterned Fe-Al-O thin films

  • N.D. Ha;Kim, Hyun-Bin;Park, Bum-Chan;Kim, C.G.;Kim, C.O.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.239-239
    • /
    • 2003
  • As a result of the recent miniaturization and enhancement in the performance of thin film inductors and thin film transformers, there are increased demands for the thin films with a high magnetic permeability in the high frequency range, a high saturation magnetization, a high electrical resistivity, and a low coercive force. In order to improve high frequency properties, we will investigate anisotropy field by shape and size of pattern. The Fe-Al-O thin films of 16mm diameter and 1$\mu\textrm{m}$ thickness were deposited on Si wafer, using RE magnetron reactive sputtering technique with the mixture of argon and oxygen gases. The fabricating conditions are obtained in the working partial pressure of 2m Torr, O$_2$ partial Pressure of 5%, Input power of 400w, and Al pellets on an Fe disk with purity of 99.9%. For continuous thin film is the 4Ms of 19.4kG, H$\sub$c/ of 0.6Oe, H$\sub$k/ of 6.0Oe and effective permeability of 2500 up to 100MHz. In this work, we expect to enhanced effect of magnetic anisotropy on patterned of Fe-Al-O thin films.

  • PDF

Templated solid-state dewetting of thin films

  • Ye, Jong-Pil;Thompson, Carl V.;Giermann, Amanda L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.54.2-54.2
    • /
    • 2012
  • Solid-state dewetting of thin films is a process through which continuous solid films decay to form islands. Dewetting of thin films has long been a critical issue in microelectronics and much effort has been made to prevent the process and enhance the stability of films. On the other hand, dewetting has also been purposely induced to create arrays of particles and other structures for applications, including plasmonic structures and catalysts for growing nanotube and nanowire. We have investigated ways of producing regular structures via templated dewetting of thin films. Mainly, two different approaches have been used in our works to template dewetting of thin films: periodic topographical templating and planar patterning of epitaxially-grown films. Dewetting of topographically-patterned thin films results in the formation of nanoparticle arrays with spatial and crystallographic orders. Morphological evolution during templated-dewetting of single crystal films occurs in deterministic ways because of geometric and crystallographic constraints, and leads to the formation of regular structures with smaller sizes and more complex shapes than the initial patches. These results will be reviewed in this presentation.

  • PDF

Additive Fabrication of Patterned Multi-Layered Thin Films of Ta2O5 and CdS on ITO Using Microcontact Printing Technique

  • Lee, Jong-Hyeon;Woo, Soo-Yeun;Kwon, Young-Uk;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2003
  • The micro-patterning of multi-layered thin films containing CdS and $Ta_2O_5$ layers on ITO substrate with various structures was successfully obtained by combining three different techniques: chemical solution depositions, sol-gel, and microcontact printing (μCP) methods using octadecyltrichlorosilane (OTS) as the organic thin layer template. $Ta_2O_5$ layer was prepared by sol-gel casting and CdS one obtained by chemical solution deposition, respectively. Parallel and cross patterns of multi-layers with $Ta_2O_5$ and CdS films were fabricated additively by successive removal of OTS layer pre-formed. This study presents the designed architectures consisting of the two types of feature having horizontal dimensions of 170 ㎛ and 340 ㎛ with constant thickness ca. 150 nm of each deposited materials. The thin film lay-out of the cross-patterning is composed of four regions with chemically different layer compositions, which are confirmed by Auger electron microanalysis.

Preparation of in situ Patterned ZnO Thin Films by Microcontact Printing (Microcontact Printing을 이용한 미세패턴 ZnO 박막 제조)

  • 임예진;윤기현;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.649-656
    • /
    • 2002
  • In situ patterned zinc oxide thin films were prepared by precipitation of Zn(NO$_3$)$_2$ aqueous solution containing urea and by microcontact printing using Self-Assembled Monolayers(SAMs) on A1/SiO$_2$/Si substrates. The visible precipitation of Zn(OH)$_2$ that was formed in the Zn(NO$_3$)$_2$ aqueous solution containing urea was enhanced with an increase of the reaction temperature and the amount of urea. As the reaction time of Zn(NO$_3$)$_2$ with urea was prolonged, the thickness and grain size of Zn(OH)$_2$ thin layers were increased, respectively. The optimum precipitation condition was at 80$\^{C}$ for 1 h for the solution with the ratio of Zn(NO$_3$)$_2$ to urea of 1 : 8. Homogeneous ZnO thin films were fabricated by the heat treatment of 600$\^{C}$ for 1 h of Zn(OH)$_2$ precipitation on Al/SiO$_2$/Si substrate. This was available to the in-situ patterned ZnO thin films with uniform grain size. Hydrophobic SAM, Octadecylphosphonic Acid(OPA) and hydrophilic SAM, 2-Carboxyethylphosphonic Acid(CPA) were applied on the Al/SiO$_2$/Si substrate by microcontact printing method. In situ patterned ZnO thin film was successfully prepared by the heat treatment of Zn(OH)$_2$ precipitated on the surface of hydrophilic SAM, CPA.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Metallizations and Electrical Characterizations of Low Resistivity Electrodes(Al, Ta, Cr) in the Amorphous Silicon Thin Film Transistor (비정질 실리콘 박막 트랜지스터 소자 특성 향상을 위한 저 저항 금속 박막 전극의 형성 및 전기적 저항 특성 평가)

  • Kim, Hyung-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.96-99
    • /
    • 1993
  • Electrical properties of the Thin Film Transistor(TFT) electrode metal films were investigated through the Test Elements Group(TEG) experiment. The main purpose of this investigation was to characterize the electrical resistance properties of patterned metal films with respect to the variations of film thickness and TEG metal line width. Aluminum(Al), Tantalum(Ta) and Chromium(Cr) that are currently used as TFT electrode films were selected as the probed metal films. To date, no work in the electrical characterizations of patterned electrodes of a-Si TFT was accomplished. Bulk resistance$(R_b)$, sheet resistance$(R_s)$, and resistivities($\rho$) of TEG patterned metal lines were obtained. Electrical continuity test of metal film lines was also performed in order to investigate the stability of metallization process. Almost uniform-linear variations of the electrical properties with respect to the metal line displacements was also observed.

  • PDF

Characteristics of Surface Morphology and Defects by Polishing Pressure in CMP of BLT Films (BLT 박막의 CMP 공정시 압력에 따른 Surface Morphology 및 Defects 특성)

  • Jung, Pan-Gum;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.101-102
    • /
    • 2006
  • PZT thin films, which are the representative ferroelectric materials in ferroelectric random access memory (FRAM), have some serious problem such as the imprint, retention and fatigue which ferroelectric properties are degraded by repetitive polarization. BL T thin film capacitors were fabricated by plasma etching, however, the plasma etching of BLT thin film was known to be very difficult. In our previous study, the ferroelectric materials such as PZT and BLT were patterned by chemical mechanical polishing (CMP) using damascene process to top electrode/ferroelectric material/bottom electrode. It is also possible to pattern the BLT thin film capacitors by CMP, however, the CMP damage was not considered in the experiments. The properties of BLT thin films were changed by the change of polishing pressure although the removal rate was directly proportional to the polishing pressure in CMP process.

  • PDF