• Title/Summary/Keyword: Pattern noise

Search Result 939, Processing Time 0.026 seconds

Phase Error Variation of Timming Recovery Circuit in Optical Communication (광통신에서 타이밍 복원 회로의 위성 오차 변화)

  • 류흥균;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.238-242
    • /
    • 1988
  • It is analyzed how performance of phase-locked loop driven by photodetector current in optical receiver will be changed under the condition that Gaussian thermal noise, pattern noise and shot noise are present and the loop has the nonzero detuning frequency. The phase error variance cahnges with the circuit configuration and the produced noise models. The analyzed results are applied to the previously implemented 90.194Mbps optic system whose loop filter is the improved active noninverting 1-st order lag-lead type.

  • PDF

Design of a Comparator with Improved Noise and Delay for a CMOS Single-Slope ADC with Dual CDS Scheme (Dual CDS를 수행하는 CMOS 단일 슬로프 ADC를 위한 개선된 잡음 및 지연시간을 가지는 비교기 설계)

  • Heon-Bin Jang;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.465-471
    • /
    • 2023
  • This paper proposes a comparator structure that improves the noise and output delay of a single-slope ADC(SS-ADC) used in CMOS Image Sensor (CIS). To improve the noise and delay characteristics of the output, a comparator structure using the miller effect is designed by inserting a capacitor between the output node of the first stage and the output node of the second stage of the comparator. The proposed comparator structure improves the noise, delay of the output, and layout area by using a small capacitor. The CDS counter used in the single slop ADC is designed using a T-filp flop and bitwise inversion circuit, which improves power consumption and speed. The single-slope ADC also performs dual CDS, which combines analog correlated double sampling (CDS) and digital CDS. By performing dual CDS, image quality is improved by reducing fixed pattern noise (FPN), reset noise, and ADC error. The single-slope ADC with the proposed comparator structure is designed in a 0.18-㎛ CMOS process.

교차로 사고음 검지시스템의 방해음향 조사연구

  • Kang, Hee-Koo;Go, Young-Gwon;Kim, Jae-Yee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.805-808
    • /
    • 2008
  • In this paper, it was performed the analysis on various intersection acoustic patterns for detection rate improvement of accident sound detection system : an acoustic pattern analysis on general traffic noise, an acoustic pattern analysis on engine noise, an acoustic pattern analysis on obstruct factors for accident sound detection system. There are remarkable differences between the acoustic patterns of traffic noise and accident sound, and we most consider the acoustic patterns when we compose the accident traffic detection system by acoustic because there is error range of 20[dB] according to the volume of traffic in intersection.

  • PDF

Spurious Mean-Reversion of Stock Prices in the State-Space Model (상태-공간 모형에서의 주가의 가성 평균-회귀)

  • Choi, Won-Hyeok;Jun, Duk-Bin;Kim, Dong-Soo;Noh, Jae-Sun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • In order to explain the U-shaped pattern of autocorrelations of stock returns i.e., autocorrelations starting around 0 for short-term horizons and becoming negative and then moving toward 0 for long-term horizons, researchers suggested the use of a state-space model consisting of an I(1) permanent component and an AR(1) stationary component, where the two components are assumed to be independent. They concluded that auto-regression coefficients derived from the state-space model follow a U-shape pattern and thus there is mean-reversion in stock prices. In this paper, we show that only negative autocorrelations are feasible under the assumption that the permanent component and the stationary component are independent in the state-space model. When the two components are allowed to be correlated in the state-space model, we show that the sign of the auto-regression coefficients is not restricted as negative. Monthly return data for all NYSE stocks for the period from 1926 to 2007 support the state-space model with correlated noise processes. However, the auto-regression coefficients of the ARIMA process, equivalent to the state-space model with correlated noise processes, do not follow a U-shaped pattern, but are always positive.

A Readout IC Design for the FPN Reduction of the Bolometer in an IR Image Sensor

  • Shin, Ho-Hyun;Hwang, Sang-Joon;Jung, Eun-Sik;Yu, Seung-Woo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.196-200
    • /
    • 2007
  • In this paper, we propose and discuss the design using a simple method that reduces the fixed pattern noise(FPN) generated on the amorphous Si($\alpha-Si$) bolometer. This method is applicable to an IR image sensor. This method can also minimize the size of the reference resistor in the readout integrated circuit(ROIC) which processes the signal of an IR image sensor. By connecting four bolometer cells in parallel and averaging the resistances of the bolometer cells, the fixed pattern noise generated in the bolometer cell due to process variations is remarkably reduced. Moreover an $\alpha-Si$ bolometer cell, which is made by a MEMS process, has a large resistance value to guarantee an accurate resistance value. This makes the reference resistor be large. In the proposed cell structure, because the bolometer cells connected in parallel have a quarter of the original bolometer's resistance, a reference resistor, which is made by poly-Si in a CMOS process chip, is implemented to be the size of a quarter. We designed a ROIC with the proposed cell structure and implemented the circuit using a 0.35 um CMOS process.

Design of phase-only diffractive pattern elements using a two-stage iterative Fourier transform algorithm (2단계 iterative Fourier transform 알고리즘을 이용한 위상형 회절무늬소자 설계)

  • 정필호;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • A two-stage iterative Fourier transform algorithm, based on hybrid input-output algorithm and new Pnoise algorithm, is used to design continuous and quantized phase-only diffractive pattern elements which produce arbitrary given intensity patterns via Fraunhofer diffraction. Numerical results for two $128\times128$ binary patterns and two grayscale patterns are compared with those of other algorithms. It is found that the algorithm yields better signal-to-noise ratio and even better uniformity with slightly lower diffraction efficiency than other algorithms. We investigated the dependence of performance on parameters used in the algorithm, size of noise region, and the number of phase levels for quantized elements. In the case of quantized phase elements, the size of noise region plays a greater role in determining the performance of the algorithm than given intensity pattern itself. tself.

  • PDF

Camera Identification of DIBR-based Stereoscopic Image using Sensor Pattern Noise (센서패턴잡음을 이용한 DIBR 기반 입체영상의 카메라 판별)

  • Lee, Jun-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.66-75
    • /
    • 2016
  • Stereoscopic image generated by depth image-based rendering(DIBR) for surveillance robot and camera is appropriate in a low bandwidth network. The image is very important data for the decision-making of a commander and thus its integrity has to be guaranteed. One of the methods used to detect manipulation is to check if the stereoscopic image is taken from the original camera. Sensor pattern noise(SPN) used widely for camera identification cannot be directly applied to a stereoscopic image due to the stereo warping in DIBR. To solve this problem, we find out a shifted object in the stereoscopic image and relocate the object to its orignal location in the center image. Then the similarity between SPNs extracted from the stereoscopic image and the original camera is measured only for the object area. Thus we can determine the source of the camera that was used.

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

Condition Monitoring of Tool wear using Sound Pressure and Fuzzy Pattern Recognition in Turning Processes (선삭공정에서 음압과 퍼지 패턴 인식을 이용한 공구 마멸 감시)

  • 김지훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.164-169
    • /
    • 1998
  • This paper deals with condition monitoring for tool wear during tuning operation. To develop economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. To identify noise sources of tool wear and reject background noise, noise rejection methodology is proposed. features to represent condition of tool wear are obtained through analysis using adaptive filter and FFT in time and frequency domain. By using fuzzy pattern recognition, we extract features, which are sensitive to condition of tool wear, from several features and make a decision on tool wear. The validity of the proposed system is condirmed through the large number of cutting tests in two cutting conditions.

  • PDF

Imaging Device Identification using Sensor Pattern Noise Based on Wiener Filtering (Wiener 필터링에 기반하는 센서 패턴 노이즈를 활용한 영상 장치 식별 기술 연구)

  • Lee, Hae-Yeoun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2153-2158
    • /
    • 2016
  • Multimedia such as image, audio, and video is easy to create and distribute with the advance of IT. Since novice uses them for illegal purposes, multimedia forensics are required to protect contents and block illegal usage. This paper presents a multimedia forensic algorithm for video to identify the device used for acquiring unknown video files. First, the way to calculate a sensor pattern noise using Wiener filter (W-SPN) is presented, which comes from the imperfection of photon detectors against light. Then, the way to identify the device is explained after estimating W-SPNs from the reference device and the unknown video. For the experiment, 30 devices including DSLR, compact camera, smartphone, and camcorder are tested and analyzed quantitatively. Based on the results, the presented algorithm can achieve the 96.0% identification accuracy.