• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.026 seconds

Hierarchical Associative Frame with Learning and Episode memory for the intelligent Knowledge Retrieval

  • Shim, Jeon-Yon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.694-698
    • /
    • 2004
  • In this paper, as one of these efforts for making the intelligent data mining system we propose the Associative frame of the memory according to the following three steps. First,the structured frame for performing the main brain function should be made. In this frame, the concepts of learning memory and episode memory are considered. Second,the learning mechanism for data acquisition and storing mechanism in the memory frame are provided. The obtained data are arranged and stored in the memory following the rules of the structured memory frame. Third, it is the last step of processing the inference and knowledge retrieval function using the stored knowledge in the associative memory frame. This system is applied to the area for estimating the purchasing degree from the type of customer's tastes, the pattern of commodities and the evaluation of a company.

  • PDF

Analyzing Technology-Service Convergence Using Smartphone Application Services (스마트폰 애플리케이션 서비스의 기술-서비스 융합 양상 분석)

  • Geum, Youngjung;Min, Hyejong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, the emergence of smartphone foster the technological convergence. This convergence no longer takes place within technologies only. Rather, convergence phenomena happen as a form of embodied services. However, previous research on convergence has been subject to the technology-oriented studies, including suggesting patent-based indexes or analyzing technological characteristics. However, investigating technology-service convergence is critical since most of new smart services are technology-based convergence services. Therefore, we analyze the pattern of technology-service convergence which occurs in the smartphone application services. We divided the smatphone application services into four categories, and employ a network analysis to represent the convergence phenomena of each category. Our study is expected to provide meaningful implication in new service development practice.

K-means Clustering using a Grid-based Sampling

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

K-means Clustering using a Grid-based Representatives

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.229-238
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

An Intelligent Intrusion Detection Model

  • Han, Myung-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.224-227
    • /
    • 2003
  • The Intrsuion Detecion Systems(IDS) are required the accuracy, the adaptability, and the expansion in the information society to be changed quickly. Also, it is required the more structured, and intelligent IDS to protect the resource which is important and maintains a secret in the complicated network environment. The research has the purpose to build the model for the intelligent IDS, which creates the intrusion patterns. The intrusion pattern has extracted from the vast amount of data. To manage the large size of data accurately and efficiently, the link analysis and sequence analysis among the data mining techniqes are used to build the model creating the intrusion patterns. The model is consist of "Time based Traffic Model", "Host based Traffic Model", and "Content Model", which is produced the different intrusion patterns with each model. The model can be created the stable patterns efficiently. That is, we can build the intrusion detection model based on the intelligent systems. The rules prodeuced by the model become the rule to be represented the intrusion data, and classify the normal and abnormal users. The data to be used are KDD audit data.

  • PDF

A sequential pattern analysis for dynamic discovery of customers' preference (고객의 동적 선호 탐색을 위한 순차패턴 분석 : (주)더페이스샵 사례)

  • Song, Ki-Ryong;Noh, Soeng-Ho;Lee, Jae-Kwang;Choi, Il-Young;Kim, Jae-Kyeong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.153-170
    • /
    • 2008
  • Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.

  • PDF

순차패턴 마이닝을 이용한 상병의 연관성 분석

  • Jin, Jong-Sik;Park, Hui-Jun;Lee, Jeong-Hyeon;Kim, Yun-Nyeon;Yun, Gyeong-Il;Eom, Heung-Seop
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.614-618
    • /
    • 2007
  • 데이터 마이닝 기법 중 순차 패턴 마이닝(Sequential Pattern Mining)은 연관 규칙에 시간의 개념을 추가하여 시간의 흐름에 따른 항목(item)들의 상호 연관성을 찾아내는 것이다. 본 연구의 목적은 순차적인 상병의 발생 가능성이 높은 상병 군의 패턴을 찾아내어 이를 모형화함으로써 차후에 발생된 상병을 예방하고 이를 통하여 환자와의 관계를 관리하여 보다 나은 의료서비스를 제공하는데 있다.

  • PDF

Fault Diagnosis of Induction Motors using Decision Trees (결정목을 이용한 유도전동기 결함진단)

  • Tran Van Tung;Yang Bo-Suk;Oh Myung-Suck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine teaming, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for four data sets with good performance results

  • PDF

A Post-Analysis of Decision Tree to Detect the Change of Customer Behavior on Internet Shopping Mall

  • Kim, Jae kyeong;Song, Hee-Seok;Kim, Tae-Sung
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.456-463
    • /
    • 2001
  • Understanding and adapting to changes of customer behavior in internet shopping mall is an important aspect to survive in continuously changing environment. This paper develops a methodology based on decision tree algorithms to detect changes of customer behavior automatically from customer profiles and sales data at different time snapshots. We first define three types of changes as emerging pattern, unexpected change and the added/perished rule. Then, it is developed similarity and difference measures for rule matching to detect all types of change. Finally, the degree of change is developed to evaluate the amount of change. A Korean internet shopping mall case is evaluated to represent the performance of our methodology. And practical business implications for this methodology are also provided.

  • PDF