• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.026 seconds

The Study on the Automated Detection Algorithm for Penetration Scenarios using Association Mining Technique (연관마이닝 기법을 이용한 침입 시나리오 자동 탐지 알고리즘 연구)

  • 김창수;황현숙
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.371-384
    • /
    • 2001
  • In these days, it is continuously increased to the intrusion of system in internet environment. The methods of intrusion detection can be largely classified into anomaly detection and misuse detection. The former uses statistical methods, features selection method in order to detect intrusion, the latter uses conditional probability, expert system, state transition analysis, pattern matching. The existing studies for IDS(intrusion detection system) use combined methods. In this paper, we propose a new intrusion detection algorithm combined both state transition analysis and association mining techniques. For the intrusion detection, the first step is generated state table for transmitted commands through the network. This method is similar to the existing state transition analysis. The next step is decided yes or no for intrusion using the association mining technique. According to this processing steps, we present the automated generation algorithm of the penetration scenarios.

  • PDF

A Design of false alarm analysis framework of intrusion detection system by using incremental mining method (점진적 마이닝 기법을 적용한 침입탐지 시스템의 오 경보 분석 프레임워크 설계)

  • Kim Eun-Hee;Ryu Keun-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.295-302
    • /
    • 2006
  • An intrusion detection system writes a lot of alarms against attack behaviors in real time. These alarms contain not only actual attack alarms, but also false alarms that are mistakes made by the intrusion detection system. False alarms are the main reason that reduces the efficiency of the intrusion detection system, and we propose framework for false alarms analysis in the paper. Also, we apply an incremental data mining method for pattern analysis of false alarms increasing continuously. The framework consists of GUI, DB Manager, Alert Preprocessor, and False Alarm Analyzer. We analyze the false alarms increasingly through the experiment of the proposed framework and show that false alarms are reduced by applying the analyzed false alarm rules in the intrusion detection system.

A Study on Autonomic Analysis for Servicing Intelligent Gas Safety Management Based on RFID/USN (RFID/USN 기반 지능형 가스안전관리 서비스를 위한 자율적 분석 연구)

  • Oh, Jeong-Seok;Choi, Kyung-Seok;Kwon, Jeong-Rock;Yoon, Ki-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.51-56
    • /
    • 2008
  • As RFID/USN technology is used in the latest industry trend, the information analysis paradigm shifts to intelligence service environment. The intelligent service includes autonomic operation, which select activity by defining itself to the status of industry facilities. Furthermore, information analysis based on IT used to frequently data mining for detecting the meaning information and deriving new pattern. This paper suggest self-classifying of context-aware by applying data mining in gas facilities for serving the intelligent gas safety management. We modify data algorithm for fitting the domain of gas safety, construct context-aware model by using the proposed algorithm, and demonstrate our method. As the accuracy of our model is improved over 90%, the our approach can apply to intelligent gas safety management based on RFID/USN environments.

A Study on Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기부하예측 시스템 연구)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

Discovering Redo-Activities and Performers' Involvements from XES-Formatted Workflow Process Enactment Event Logs

  • Pham, Dinh-Lam;Ahn, Hyun;Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4108-4122
    • /
    • 2019
  • Workflow process mining is becoming a more and more valuable activity in workflow-supported enterprises, and through which it is possible to achieve the high levels of qualitative business goals in terms of improving the effectiveness and efficiency of the workflow-supported information systems, increasing their operational performances, reducing their completion times with minimizing redundancy times, and saving their managerial costs. One of the critical challenges in the workflow process mining activity is to devise a reasonable approach to discover and recognize the bottleneck points of workflow process models from their enactment event histories. We have intuitively realized the fact that the iterative process pattern of redo-activities ought to have the high possibility of becoming a bottleneck point of a workflow process model. Hence, we, in this paper, propose an algorithmic approach and its implementation to discover the redo-activities and their performers' involvements patterns from workflow process enactment event logs. Additionally, we carry out a series of experimental analyses by applying the implemented algorithm to four datasets of workflow process enactment event logs released from the BPI Challenges. Finally, those discovered redo-activities and their performers' involvements patterns are visualized in a graphical form of information control nets as well as a tabular form of the involvement percentages, respectively.

For Gene Disease Analysis using Data Mining Implement MKSV System (데이터마이닝을 활용한 유전자 질병 분석을 위한 MKSV시스템 구현)

  • Jeong, Yu-Jeong;Choi, Kwang-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.781-786
    • /
    • 2019
  • We should give a realistic value on the large amounts of relevant data obtained from these studies to achieve effective objectives of the disease study which is dealing with various vital phenomenon today. In this paper, the proposed MKSV algorithm is estimated by optimal probability distribution, and the input pattern is determined. After classifying it into data mining, it is possible to obtain efficient computational quantity and recognition rate. MKSV algorithm is useful for studying the relationship between disease and gene in the present society by simulating the probabilistic flow of gene data and showing fast and effective performance improvement to classify data through the data mining process of big data.

Creep-permeability behavior of sandstone considering thermal-damage

  • Hu, Bo;Yang, Sheng-Qi;Tian, Wen-Ling
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-83
    • /
    • 2019
  • This investigation presented conventional triaxial and creep-permeability tests on sandstones considering thermally-induced damage (TID). The TID had no visible effects on rock surface color, effective porosity and permeability below $300^{\circ}C$ TID level. The permeability enlarged approximately two orders of magnitude as TID increased to $1000^{\circ}C$ level. TID of $700^{\circ}C$ level was a threshold where the influence of TID on the normalized mass and volume of the specimen can be divided into two linear phases. Moreover, no prominent variations in the deformation moduli and peak strength and strain appeared as TID< $500^{\circ}C$ level. It is interesting that the peak strength increased by 24.3% at $700^{\circ}C$ level but decreased by 11.5% at $1000^{\circ}C$ level. The time-related deformation and steady-state creep rate had positive correlations with creep loading and the TID level, whereas the instantaneous modulus showed the opposite. The strain rates under creep failure stresses raised 1-4 orders of magnitude than those at low-stress levels. The permeability was not only dependent on the TID level but also dependent on creep deformation. The TID resulted in large deformation and complexity of failure pattern for the sandstone.

A Study on Process Management Method of Offshore Plant Piping Material using Process Mining Technique (프로세스 마이닝 기법을 이용한 해양플랜트 배관재 제작 공정 관리 방법에 관한 연구)

  • Park, JungGoo;Kim, MinGyu;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.143-151
    • /
    • 2019
  • This study describes a method for analyzing log data generated in a process using process mining techniques. A system for collecting and analyzing a large amount of log data generated in the process of manufacturing an offshore plant piping material was constructed. The analyzed data was visualized through various methods. Through the analysis of the process model, it was evaluated whether the process performance was correctly input. Through the pattern analysis of the log data, it is possible to check beforehand whether the problem process occurred. In addition, we analyzed the process performance data of partner companies and identified the load of their processes. These data can be used as reference data for pipe production allocation. Real-time decision-making is required to cope with the various variances that arise in offshore plant production. To do this, we have built a system that can analyze the log data of real - time system and make decisions.

Media coverage of the conflicts over the 4th Industrial Revolution in the Republic of Korea from 2016 to 2020: a text-mining approach

  • Yang, Jiseong;Kim, Byungjun;Lee, Wonjae
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.2
    • /
    • pp.202-221
    • /
    • 2022
  • The media has depicted an abrupt socio-technological change in the Republic of Korea with the 4th Industrial Revolution. Because technologies cannot realize their potential without social acceptance, studying conflicts incurred by such a change is imperative. However, little literature has focused on conflicts caused by technologies. Therefore, the current study investigated media coverage regarding conflicts related to the 4th Industrial Revolution from 2016 to 2020 in the Republic of Korea, applying text-mining techniques. We found that the overall amount and coverage pattern conforms to the issue attention cycle. Also, the three major topics ("SMEs & Startups," "Mobility Conflict," and "Human & Technology") indicate quarrels between conflicting social entities. Moreover, the temporal change in media coverage implies the political use of the term rather than technological. However, we also found the media's deliberative discussion on the socio-technological impact. This study is significant because we expanded the discussion on media coverage of technologies to the realm of social conflicts. Furthermore, we explored the news articles of the recent five years with a text-mining approach that enhanced the objectivity of the research.

Conceptual Framework for Pattern-Based Real-Time Trading System using Genetic Algorithm (유전알고리즘 활용한 실시간 패턴 트레이딩 시스템 프레임워크)

  • Lee, Suk-Jun;Jeong, Suk-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • The aim of this study is to design an intelligent pattern-based real-time trading system (PRTS) using rough set analysis of technical indicators, dynamic time warping (DTW), and genetic algorithm in stock futures market. Rough set is well known as a data-mining tool for extracting trading rules from huge data sets such as real-time data sets, and a technical indicator is used for the construction of the data sets. To measure similarity of patterns, DTW is used over a given period. Through an empirical study, we identify the ideal performances that were profitable in various market conditions.