• Title/Summary/Keyword: Pattern match algorithm

Search Result 23, Processing Time 0.029 seconds

An Improved Signature Hashing-based Pattern Matching for High Performance IPS (고성능 침입방지 시스템을 위해 개선한 시그니처 해싱 기반 패턴 매칭 기법)

  • Lee, Young-Sil;Kim, Nack-Hyun;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.434-437
    • /
    • 2010
  • NIPS(Network Intrusion Prevention System) is in line at the end of the external and internal networks which performed two kinds of action: Signature-based filtering and anomaly detection and prevention-based on self-learning. Among them, a signature-based filtering is well known to defend against attacks. By using signature-based filtering, intrusion prevention system passing a payload of packets is compared with attack patterns which are signature. If match, the packet is discard. However, when there is packet delay, it will increase the required pattern matching time as the number of signature is increasing whenever there is delay occur. Therefore, to ensure the performance of IPS, we needed more efficient pattern matching algorithm for high-performance ISP. To improve the performance of pattern matching the most important part is to reduce the number of comparisons signature rules and the packet whenever the packets arrive. In this paper, we propose an improve signature hashing-based pattern matching method. We use tuple pruning algorithm with Bloom filters, which effectively remove unnecessary tuples. Unlike other existing signature hashing-based IPS, our proposed method to improve the performance of IPS.

  • PDF

Fault diagnosis for chemical processes using weighted symptom model and pattern matching (가중증상모델과 패턴매칭을 이용한 화학공정의 이상진단)

  • Oh, Young-Seok;Mo, Kyung-Ju;Yoon, Jong-Han;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.520-525
    • /
    • 1997
  • This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.

  • PDF

Upstairs Walking of a Biped Robot Using Genetic Algorithm (유전 알고리듬을 이용한 이족 보행로봇의 계단 오르기 수행)

  • Kim, Eun-Su;Kim, Tae-Gyu;Kim, Jong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1059-1060
    • /
    • 2008
  • In this paper, using a genetic algorithm, consisting of six to seven degrees of freedom links, walking robot to up-stair that can walk to optimize energy and stability to generate. Walking robot to up-stairs of the four-step segmentation of the various situations that match the pace and pattern so that it can generate. It also generated using genetic algorithms to test for Matlab into the Robot Simulation of the humanoid experiment was used.

  • PDF

Object Tracking using Adaptive Template Matching

  • Chantara, Wisarut;Mun, Ji-Hun;Shin, Dong-Won;Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Template matching is used for many applications in image processing. One of the most researched topics is object tracking. Normalized Cross Correlation (NCC) is the basic statistical approach to match images. NCC is used for template matching or pattern recognition. A template can be considered from a reference image, and an image from a scene can be considered as a source image. The objective is to establish the correspondence between the reference and source images. The matching gives a measure of the degree of similarity between the image and the template. A problem with NCC is its high computational cost and occasional mismatching. To deal with this problem, this paper presents an algorithm based on the Sum of Squared Difference (SSD) and an adaptive template matching to enhance the quality of the template matching in object tracking. The SSD provides low computational cost, while the adaptive template matching increases the accuracy matching. The experimental results showed that the proposed algorithm is quite efficient for image matching. The effectiveness of this method is demonstrated by several situations in the results section.

A Hybrid Multiple Pattern Matching Scheme to Reduce Packet Inspection Time (패킷검사시간을 단축하기 위한 혼합형 다중패턴매칭 기법)

  • Lee, Jae-Kook;Kim, Hyong-Shik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.27-37
    • /
    • 2011
  • The IDS/IPS(Intrusion Detection/Prevention System) has been widely deployed to protect the internal network against internet attacks. Reducing the packet inspection time is one of the most important challenges of improving the performance of the IDS/IPS. Since the IDS/IPS needs to match multiple patterns for the incoming traffic, we may have to apply the multiple pattern matching schemes, some of which use finite automata, while the others use the shift table. In this paper, we first show that the performance of those schemes would degrade with various kinds of pattern sets and payload, and then propose a hybrid multiple pattern matching scheme which combines those two schemes. The proposed scheme is organized to guarantee an appropriate level of performance in any cases. The experimental results using real traffic show that the time required to do multiple pattern matching could be reduced effectively.

A Study on Development of Expert System for Collision Avoidance and Navigation(I): Basic Design

  • Jeong, Tae-Gwoen;Chen, Chao
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.529-535
    • /
    • 2008
  • As a method to reduce collision accidents of ships at sea, this paper suggests an expert system for collision avoidance and navigation (hereafter "ESCAN"). The ESCAN is designed and developed by using the theory and technology of expert system and based on the information provided by AIS and RADAR/ARPA system. In this paper the ESCAN is composed of four(4) components; Facts/Data Base in charge of preserving data from navigational equipment, Knowledge Base storing production rules of the ESCAN, Inference Engine deciding which rules are satisfied by facts or objects, User System Interface for communication between users and ESCAN. The ESCAN has the function of real--time analysis and judgment of various encountering situations between own ship and targets, and is to provide navigators with appropriate plans of collision avoidance and additional advice and recommendation This paper, as a basic study, is to introduce the basic design and function of ESCAN.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Object Recognition of Robot Using 3D RFID System

  • Roh, Se-Gon;Park, Jin-Ho;Lee, Young-Hoon;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.62-67
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) technology has been suggested to support recognition and has been rapidly and widely applied. This paper introduces the more advanced RFID-based recognition. A novel tag named 3D tag, which facilitates the understanding of the object, was designed. The previous RFID-based system only detects the existence of the object, and therefore, the system should find the object and had to carry out a complex process such as pattern match to identify the object. 3D tag, however, not only detects the existence of the object as well as other tags, but also estimates the orientation and position of the object. These characteristics of 3D tag allows the robot to considerably reduce its dependence on other sensors required for object recognition the object. In this paper, we analyze the 3D tag's detection characteristic and the position and orientation estimation algorithm of the 3D tag-based RFID system.

  • PDF

A Study on the User Perception in Fashion Design through Social Media Text-Mining (소셜미디어 텍스트마이닝을 통한 패션디자인 사용자 인식 조사)

  • An, Hyosun;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1060-1070
    • /
    • 2017
  • This study seeks methods to analyze users' perception in fashion designs shown in social media using textmining analysis methods. The research methods selected 'men's stripe shirts' as subjects and collected texts related to the subject mainly from blogs. Texts from 13,648 posts from November 1st, 2015 to October 31st, 2016 were analyzed by applying the LDA algorithm and content analysis. As a result, the wearing status per season and subjects of men's stripe shirts were derived. Across the entire period, the main topics discussed by users to be pattern, customized suits, brands, coordination and purchase information. In terms of seasons, spring time showed the sharing of information on coordinating daily looks or boyfriend looks, and during the winter season the information shared were about shirts suitable for special occasions such as job interviews and stripe shirts that match suits. The study results showed that text-mining analysis is capable of analyzing the context and provide a user-centered index responding to demands newly mentioned by users along with the rapid changes in fashion design trends.

A Rewriting Algorithm for Inferrable SPARQL Query Processing Independent of Ontology Inference Models (온톨로지 추론 모델에 독립적인 SPARQL 추론 질의 처리를 위한 재작성 알고리즘)

  • Jeong, Dong-Won;Jing, Yixin;Baik, Doo-Kwon
    • Journal of KIISE:Databases
    • /
    • v.35 no.6
    • /
    • pp.505-517
    • /
    • 2008
  • This paper proposes a rewriting algorithm of OWL-DL ontology query in SPARQL. Currently, to obtain inference results of given SPARQL queries, Web ontology repositories construct inference ontology models and match the SPARQL queries with the models. However, an inference model requires much larger space than its original base model, and reusability of the model is not available for other inferrable SPARQL queries. Therefore, the aforementioned approach is not suitable for large scale SPARQL query processing. To resolve tills issue, this paper proposes a novel SPARQL query rewriting algorithm that can obtain results by rewriting SPARQL queries and accomplishing query operations against the base ontology model. To achieve this goal, we first define OWL-DL inference rules and apply them on rewriting graph pattern in queries. The paper categorizes the inference rules and discusses on how these rules affect the query rewriting. To show the advantages of our proposal, a prototype system based on lena is implemented. For comparative evaluation, we conduct an experiment with a set of test queries and compare of our proposal with the previous approach. The evaluation result showed the proposed algorithm supports an improved performance in efficiency of the inferrable SPARQL query processing without loss of completeness and soundness.