A Rewriting Algorithm for Inferrable SPARQL Query Processing Independent of Ontology Inference Models

온톨로지 추론 모델에 독립적인 SPARQL 추론 질의 처리를 위한 재작성 알고리즘

  • 정동원 (국립군산대학교 수학정보통계학부) ;
  • ;
  • 백두권 (고려대학교 컴퓨터학과)
  • Published : 2008.12.15

Abstract

This paper proposes a rewriting algorithm of OWL-DL ontology query in SPARQL. Currently, to obtain inference results of given SPARQL queries, Web ontology repositories construct inference ontology models and match the SPARQL queries with the models. However, an inference model requires much larger space than its original base model, and reusability of the model is not available for other inferrable SPARQL queries. Therefore, the aforementioned approach is not suitable for large scale SPARQL query processing. To resolve tills issue, this paper proposes a novel SPARQL query rewriting algorithm that can obtain results by rewriting SPARQL queries and accomplishing query operations against the base ontology model. To achieve this goal, we first define OWL-DL inference rules and apply them on rewriting graph pattern in queries. The paper categorizes the inference rules and discusses on how these rules affect the query rewriting. To show the advantages of our proposal, a prototype system based on lena is implemented. For comparative evaluation, we conduct an experiment with a set of test queries and compare of our proposal with the previous approach. The evaluation result showed the proposed algorithm supports an improved performance in efficiency of the inferrable SPARQL query processing without loss of completeness and soundness.

이 논문에서는 SPARQL로 작성된 OWL-DL 온톨로지 질의에 대한 재작성 알고리즘은 제안한다. 현재 웹 온톨로지 저장소는 주어진 SPARQL 질의의 추론 결과를 얻기 위해 추론 온톨로지 모델을 생성하고 SPARQL 질의와 생성된 추곤 온톨로지 모델과의 일치성을 비교한다. 추론 모델은 베이스 온톨로지 모델에 비해 보다 큰 공간을 필요로 하고 다른 추론 질의론 위해 재사용 될 수 없기 때문에 앞서 언급한 접근 방법은 보다 방대한 크기의 SPARQL 질의 처리에 부적합하다. 이러한 문제점을 해결하기 위해 이 논문에서는 비SPARQL 질의를 재작성하고 이를 기본 베이스 온톨로지 모델에 대해 질의 연산을 수행하여 결과를 획득할 수 있는 SPARQL 재작성 알고리즘을 제안한다. 이러한 목적을 이루기 위해, 먼저 OWL-DL 추론 규칙을 정의하고 이를 질의 그래프 패턴 재작성에 적용한다. 또한 추론 규칙들을 분류하고 이러한 규칙들이 질의 재작성에 미치는 영향에 대하여 기술한다. 제안 알고리즘의 장점을 보이기 위해, Jena 기반의 프로토타입 시스템을 구현한다. 비교 평가론 위해 테스트 질의를 이용하여 실험을 수행하고 제안 방법과 기존 접근 방법을 비교한다. 실험 결과에서, 제안 알고리즘이 완전성 및 정확성의 손실없이 메모리 공간 및 온톨로지 로딩 측면에서 향상된 성능을 보였다.

Keywords

References

  1. Klyne, G. and Carroll, J.J., "Resource Description Framework (RDF): Concepts and Abstract Syntax," W3C Recommendation, 10 February 2004. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
  2. Patel-Schneider, P.F., Hayes, P., and Horrocks, I., "OWL Web Ontology Language Semantics and Abstract Syntax," W3C Recommendation, 10 February 2004. http://www.w3.org/TR/2004/REC-owl- semantics-20040210/
  3. Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net
  4. Broekstra, J., Kampman, A., and Harmelen, F.V., "Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema," Springer Verlag, Lecture Notes in Computer Sciences, Vol. 2342, pp. 54-68, 2002
  5. Hayes, P., "RDF Semantics," W3C Recommendation, 10 February 2004. http://www.w3.org/TR/2004/ REC-rdf-mt-20040210/
  6. Horrocks, I. and Sattler, U., "A Tableaux Decision Procedure for SHOIQ," In Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp 448-453, 2005
  7. Broekstra, J., Kampman, A. "Exploring a naive practical approach," In Workshop on Practical and Scalable Semantic Systems at the Second International Semantic Web Conference, Sanibel Island, Florida, October 2003
  8. Noy, N.F. and Klein, M., "Ontology Evolution: Not the Same as Schema Evolution," Knowledge and Information Systems, Vol. 6, pp. 428-440, 2004 https://doi.org/10.1007/s10115-003-0137-2
  9. Pinto, H.S. and Martins, J.P., "Ontologies: How can They be Built?," Knowledge and Information Systems, Vol. 6, pp. 441-464, 2004 https://doi.org/10.1007/s10115-003-0138-1
  10. Kotis, K. and Vouros, G.A., "Human-centered ontology engineering: The HCOME methodology," Knowledge and Information Systems, Vol. No. 1, pp. 109-131, 2006
  11. Fuxman, A. and Miller, J., "First-Order Query Rewriting for Inconsistent Databases," In Proceedings of the 10th International Conference on Database Theory, Scotland, pp. 337-351, 2005
  12. Vidal, M.E., Raschid, L., Marquez, N., Cardenas, M., and Wu, Y., "Query Rewriting in the Semantic Web," In Proceedings of the 22nd International Conference on Data Engineering Workshops, USA, 2006
  13. Halevy A.Y., "Answering Queries Using Views: A survey," VLDB Journal: Very Large Data Bases, Vol. 10, No. 4, pp. 270-294, 2001 https://doi.org/10.1007/s007780100054
  14. Prudhommeaux, E. and Seaborne, A., "SPARQL Query Language for RDF," W3C Working Draft, 12 October 2004. http://www.w3.org/TR/2004/WD- rdf-sparql-query-20041012/
  15. Seaborne, A., "RDQL - A query language for RDF," W3C Member Submission, 9 January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
  16. Fikes, R., Hayes, P., and Horrocks, I. "OWL-QL - A Language for Deductive Query Answering on the Semantic Web," Technical Report KSL-03-14, Stanford University, CA, 2003
  17. Volker, H., Moller, R., and Wessel, M., "Querying the Semantic Web with Racer + nRQL," In Proceedings of the KI-2004 International Workshop on Applications of Description Logics, Ulm, Germany, September 24, 2004
  18. Perez, J., Arenas, M., and Gutierrez, C., "Semantics and Complexity of SPARQL," Springer Verlag, In Proceedings of the 5th International Semantic Web Conference, Vol. 4273, pp 30-43, 2006
  19. Zhang, C., Naughton, J., DeWitt, D., Luo, Q, and Lohman G., "On Supporting Containment Queries in Relational Database Management Systems," In Proceedings of the 2001 ACM SIGMOD Conference, 2001
  20. Guo, Y., Pan, Z., and Heflin, J., "LUBM: A Benchmark for OWL Knowledge Base Systems," Journal of Web Semantics, Vol. 3, No. 2, pp. 158-182, 2005 https://doi.org/10.1016/j.websem.2005.06.005