• 제목/요약/키워드: Pattern Vector

검색결과 803건 처리시간 0.024초

서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘 (Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks)

  • 강성관;천상훈
    • 디지털융복합연구
    • /
    • 제14권2호
    • /
    • pp.183-190
    • /
    • 2016
  • 본 논문은 서베일런스 네트워크에서 이동하는 객체 추적 시 영상 데이터의 전송량을 감소시키는 신경망 계산 시간의 단축 알고리즘을 제안한다. 객체 검출은 디지털화 연속된 영상으로부터 객체 존재 유무를 판단하고, 객체가 존재할 경우 영상 내 객체의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 그러나 영상 내의 객체는 위치, 크기, 빛의 방향 및 밝기, 장애물 등의 환경적 변화로 인해 객체 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 신경망을 사용하여 몇 가지 환경적 조건을 극복한 정확하고 빠른 객체 검출 방법을 제안한다. 검색 영역의 축소는 영상 내 색상 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 벡터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 실시간으로 입력되는 동영상에서 모두 실험하였으며, 색상 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 따른 검출 성공률의 차를 보였다. 실험 결과에서 보면 제안하는 방법으로써 객체의 움직임을 탐지하였을 때 기존의 방법보다 30% 정도 더 높은 인식 성능을 보여준다.

EEG 대역별 스펙트럼 활성 비를 활용한 BCI-TAT 기반 심리 분석 시스템 (Psychology analyzing system using spectrum component density ratio of EEG based on BCI-TAT)

  • 신정훈;진상현
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.112-124
    • /
    • 2010
  • 정신장애 관련 검사 및 진단 방안에 관한 연구는 국내 외적으로 활발히 진행되고 있으나 해결을 위한 가장 기본적인 연구인 심리검사에 관한 연구는 다음과 같은 근본적인 문제점들을 내포한다. 기존 심리 검사의 대표적인 문제점으로는 심리상담가의 전문적 훈련정도에 따른 검사 결과의 해석 차이 등을 들 수 있다. 이러한 문제는 객관화된 심리 분석기법의 부재로부터 야기되어 지며 그 결과 동일한 피험자 응답에 대해서도 심리 검사자에 따른 서로 다른 주관적인 분석으로 귀결되어 진다. 심리검사 시 또 다른 문제점은 심리검사의 방법으로 부터 야기되어 진다. 기존의 심리검사는 다양한 의사소통을 통하여 이루어지게 되며, 이러한 문제는 중증장애우, 외국인, 영유아 피험자들의 심리 검사 및 분석을 어렵게 한다. 따라서 본 논문에서는 이러한 주관적인 심리검사의 문제점을 해결하기 위한 방안으로 Ballken지수법을 활용하여 주관적 심리검사 및 분석 기법중 하나인 TAT(Thematic Apperception Test)를 분석하여 정량화를 시도하며 객관화 하고자 한다. 정량화되어진 분석결과를 BCI(Brain Computer Interface)기반의 TAT환경 하에 수집되어진 사용자의 뇌파 신호와 비교분석하여 정신장애에 따른 뇌파특징벡터 DB의 구축 및 분류를 수행 한다. 본 논문에서 제안하는 심리검사 및 진단 시스템은 기 구축된 뇌파특징벡터 DB를 활용하여 기존의 주관적인 심리검사 기법을 정량화 및 객관화하며, 피험자의 간단한 뇌파검사만으로도 심리검사가 가능하여 기존 심리검사의 대표적인 문제점을 해결 가능 할 것으로 판단되어진다.

3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템 (HMM-based Intent Recognition System using 3D Image Reconstruction Data)

  • 고광은;박승민;김준엽;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.135-140
    • /
    • 2012
  • 대뇌 상의 mirror neuron system은 시각 정보에 기반한 모방학습 기능을 담당한다. 관측자의 mirror neuron system 영역을 관찰할 때, 행위자가 수행하는 목적성 행위의 전체가 아닌, 부분적으로 가려지거나 보이지 않는 영역을 포함하는 경우에도 해당 영역의 뉴런이 발화되는 과정을 통해 전체 행동의 의도를 유추할 수 있다. 이러한 모방학습 기능을 3D 비전 기반 지능 시스템에 적용하는 것이 본 논문의 목표이다. 본 연구실에서 선행 연구된 스테레오 카메라를 기반으로 획득된 3차원 영상에 대한 복원을 수행한다. 이 때 3차원 입력영상은 부분적으로 가려진 영역을 포함하는 손동작의 순차적 연속영상이다. 복원 결과를 기반으로 가려진 영역을 내포한 행위에 대하여 LK optical flow, unscented Kalman filter를 이용한 특징검출을 수행하고 의도인식의 수행을 위해, Hidden Markov Model을 활용한다. 순차적 입력데이터에 대한 동적 추론 기능은 가려진 영역을 포함한 손동작 인식 수행에 있어 적합한 특성을 가진다. 본 논문에서 제안하는 의도 인식을 위해 선행 연구에서 복원 영상에서의 객체의 윤곽선 및 특징 검출을 시뮬레이션 하였으며, 검출 특징에 대한 시간적 연속 특징벡터를 생성하여 Hidden Markov Model에 적용함으로써, 의도 패턴에 따른 손동작 분류 시뮬레이션을 수행하였다. 사후 확률 값의 형태로 손 동작 분류 결과를 얻을 수 있었으며, 이를 통한 성능의 우수함을 입증하였다.

개인화된 건강 데이터의 대량 처리 모니터링을 위한 메시지 모델 및 동적 버퍼 할당 설계 (Design of Dynamic Buffer Assignment and Message model for Large-scale Process Monitoring of Personalized Health Data)

  • 전영준;황희정
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.187-193
    • /
    • 2015
  • ICT 힐링플랫폼은 만성질환 예방을 목적으로 하며 개인의 생체신호 및 생황습관 등의 정보에 기반을 둔 질환 조기 경보를 목표로 한다. 이를 위한 2-step 개방형 시스템(TOS)에는 힐링플랫폼과 개인건강데이터 저장소간의 중계가 설계되었으며 데이터 처리과정을 실시간으로 전송(모니터링)하기 위한 대량 커넥션 기반의 publish/subscribe(pub/sub) 서비스가 고려되었다. 그러나 TOS pub/sub의 초기 설계에서는 커넥션 메시지를 deflate 알고리즘으로 인코딩하기 위해, 커넥션의 유휴(idle) 여부 및 메시지의 종류에 상관없이 동일한 버퍼를 할당한다. 본 논문의 동적 버퍼 할당은 다음과 수행된다. 우선 각 커넥션의 메시지 전송 유형을 큐잉하고, 각 큐는 tf-idf를 통해 특징(feature)추출 연산 후 벡터로 변환하여 k-means 클러스터에 입력하여 군집을 생성한다. 특정 군집으로 분류된 커넥션은 해당 군집의 자원 테이블에 따라 자원을 재할당 한다. 이때 각 군집의 센트로이드(centroid)는 해당 군집을 대표하는 큐잉 패턴을 사전에 선택하여 자원참조 테이블(버퍼 크기별 인코딩 효율)로 도출한다. 제안된 설계는 TOS의 인코딩 버퍼 자원을 네트워크 커넥션에 효율적으로 배분하기 위해, 군집 및 특징 연산을 위한 연산 자원과 네트워크 대역폭 간의 trade-off를 수행함으로써 TOS의 tps(단위 시간당 실시간 데이터 처리 모니터링 연결수)를 높이는데 활용할 수 있다.

얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발 (Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition)

  • 오선문;강대성
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.55-62
    • /
    • 2005
  • 본 논문에서는 인간의 인지학적인 두뇌 원리인 대뇌피질과 해마 신경망을 공학적으로 모델링하여 얼굴 영상의 특징 벡터들을 고속 학습하고, 각 영상의 최적의 특징을 구성할 수 있는 해마 신경망 모델링 알고리즘인 HNMA(Hippocampal Neuron Modeling Algorithm)을 이용한 얼굴인식 시스템을 제안한다. 시스템은 크게 특징추출 부분과 학습 및 인식 부분으로 구성 되어 있으며, 특징추출 부분에서는 PCA(Principal Component Analysis)와 LDA (Linear Discriminants Analysis)를 순차적으로 적용하여 분별력이 좋은 특징들로 구성한다. 학습부분에서는 해마 신경망 구조의 순서에 따라 입력되는 영상 데이터의 특징들을 치아 이랑 영역에서 호감도 조정에 따라서 반응 패턴으로 이진화 하고, CA3 영역에서 자기 연상 메모리 단계를 거쳐 노이즈를 제거한다. CA3의 정보를 받는 CAI영역에서는 신경망에 의해 학습되어 장기기억이 만들어 진다. 제안한 시스템의 성능을 평가하기 위하여 실험은 표정과 포즈변화 그리고 저 화질 이미지를 각각 구분하여 인식률을 확인하였다. 실험 결과, 본 논문에서 제안하는 특징 추출 방법과 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.

광릉긴나무좀(Coleoptera: Platypodidae)의 수간내 분포와 참나무 피해 (Tree Trunk Level Distribution of Entry Hole by Platypus koryoensis (Coleoptera: Platypodidae) and Its Implication to Tree Damage)

  • 최원일;이정수;최광식;김종국;신상철
    • 한국응용곤충학회지
    • /
    • 제47권2호
    • /
    • pp.127-131
    • /
    • 2008
  • 참나무시들음병의 매개충인 광릉긴나무좀, Platypus koryoensis(Murayama)은 한국에서 참나무시들음병원균인 Raffaelea sp.를 매개하는 것으로 알려져 있다. 참나무시들음 발병정도는 광릉긴나무좀의 밀도에 의존적인 것으로 추정되고 있다. 이에 (樹幹)내 천공수와 집중도가 참나무 피해정도에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 수락산 피해지에서 고사목 6그루와 피해목 28그루의 신갈나무의 피해정도, 단위면적당 천공수, 천공간 최근거리를 수간의 상부(지표로부터 50cm)와 하부(지표면)에서 조사하였다. 상부와 하부에서의 천공수는 양의 상관을 보였으며 천공간 최근거리 또한 같은 경향을 보였다. 천공수가 증가할수록 수목의 피해도가 심하였으나 수목의 피해도가 심할수록 천공간 최근거리는 감소하였다. 천공의 분포도 수목의 피해도가 증가할수록 집중분포에서 군일분포로 바뀌었다. 광릉긴나무좀이 초기에는 집중적으로 공격을 하나 수간내 밀도가 증가함에 따라 종내경쟁이 일어나고 경쟁의 결과 개체간 간섭현상이 유도되고 천공의 공간적 분포가 균일하게 변환하게 된다는 것을 암시하는 것이다.

WebPR :빈발 순회패턴 탐사에 기반한 동적 웹페이지 추천 알고리즘 (WebPR : A Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns)

  • 윤선희;김삼근;이창훈
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.187-198
    • /
    • 2004
  • 월드 와이드 웹(World-Wide Web)은 가장 커다란 분산된 정보저장소로서 계속하여 빠른 속도로 성장해왔다. 그러나 비록 웹이 빠른 속도로 성장하고 있다 할지라도, 웹의 정보를 읽고 이해하는 데는 본질적으로 한계가 있다. 웹 사용자 입장에서 보면 웹의 정보 폭발, 꾸준하게 변화하는 환경, 사용자 요구에 대한 이해 부족 둥으로 오히려 혼란을 겪을 수 있다. 웹의 이러한 환경에서 사용자의 순회패턴(traversal patterns)을 탐사하는 것은 시스템 설계나 정보서비스 제공 측면에서 중요한 문제이다. 순회패턴 탐사에 관한 기존의 연구들은 세션(sessions)에 나타나는 페이지들간의 연관성 정보를 충분히 활용하지 못한다. 본 논문에서는 세션에 나타나는 페이지들간의 연관성 정보를 활용하여 빈발 k-페이지집합을 탐사하고, 이를 기반으로 하여 추천 페이지집합을 생성함으로써 효율적인 웹 정보서비스를 제공할 수 있는 Web Page Recommend(WebPR) 알고리즘들을 제안한다. 제안한 WebPR 알고리즘은 웹 사이트를 방문한 사용자에게 추천 페이지집합을 포함하는 새로운 페이지뷰(pageview)를 제공함으로써 궁극적으로 찾고자하는 목표 페이지에 효과적으로 접근할 수 있도록 해준다. 기존 연구들과의 가장 큰 차이점은 페이지들간의 연관성 정보를 활용하는 방법들을 일관성 있게 고려하고 있다는 점과 가장 효율적인 트리모델을 제안한다는 점이다. 두개의 실제 웹로그(Weblog) 데이터에 대한 실험은 제안한 방법이 기존의 방법들보다 성능이 우수함을 보여준다.

고무타이어 문자열 입력영상 개선을 위한 전처리와 광학조건에 관한 연구 (A Study on Optical Condition and preprocessing for Input Image Improvement of Dented and Raised Characters of Rubber Tires)

  • 류한성;최중경;권정혁;구본민;박무열
    • 한국정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.124-132
    • /
    • 2002
  • 영상처리라는 것은 문자를 인식하거나 물체를 인식하는 등 어떠한 물체의 특징을 추출하여 그에 대한 정보를 가지고 자동제어 시스템이나 인식시스템에 도입하는 것이다. 그러나 이러한 시스템들에 도입시키기 위해서는 찾고자 하는 물체의 특징을 잘 검출할 수 있어야 하며 검출된 특징의 패턴도 잘 잘 구별해야 한다. 그러나 본 논문에서 다루고 있는 고무 타이어의 특성은 배경과 문자열이 존재하는 특징면이 잘 구분되지 않는다는 것이다. 이것은 곧 특징 추출이 어렵다는 것을 간접적으로 나타내고 있는 것이다. 그러므로 수많은 논문에서 손실된 특징 정보를 복원하기 위한 기술과 끊어진 문자 정보를 유추하여 맞춰 내는 등의 기술을 많이 연구해 왔다. 그러나 우리는 무엇보다 처음에 입력받는 영상이 좋아야만 나머지 필터링이나 영상 처리기법이 쉽다고 생각하여 입력 영상을 개선시킬 수 있는 광학적인 환경에 관심을 두기로 하였다. 본 논문은 이리한 영상처리기법 중에서 입력 영상을 보다 선명하게 받아들이기 위한 조건을 찾고 광학적인 이론을 찾고자 하는 논문이다. 본 논문은 타이어를 생산하는 라인에서 타이어에 각인되어 있는 문자를 인식하고 상위 컴퓨터인 호스트 컴퓨터에 자료를 전송함으로써 물류를 관리하고, 다음 공정인 전수 검사공정에서 각 타이어에 맞는 휠을 끼우기 위한 작업을 위한 것이다. 이러한 시스템을 위해서는 나은 양질의 입력영상을 획득해야만 인식과정에서 오인식을 줄일 수 있고 자동화 공정에 응용할 수 있다. 양질의 입력영상을 획득하기 위해서는 빛의 입사각도와 피사체가 이루는 각도가 어떠한 각의 형태를 가지는가 하는 것이 중요하며 또한 이것을 받아들이는 카메라의 각도가 피사체와 어떠한 각을 이루는가? 하는 것도 중요한 문제이다. 본 논문에서는 이에 대한 최적조건을 실험적인 방법으로 찾고, 이에 대한 결과를 광학적으로 증명해 보고자 한다.

모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식 (AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera)

  • 황승준;고하윤;백중환
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.471-479
    • /
    • 2018
  • 최근 안드로이드, iOS 등의 셋톱박스 기반의 스마트 TV에 대한 보급에 따라 제스처로 TV를 컨트롤 할 수 있는 새로운 접근을 제안한다. 본 논문에서는 모노 카메라 센서를 이용한 AdaBoost 기반 제스처 인식에 관한 알고리즘을 제안한다. 우선, 신체 좌표 추출을 위해 가우시안 배경 제거 및 Camshift 기반 자세 추적 및 추정 알고리즘을 사용한다. AdaBoost 학습 모델을 신체 정규화된 광역 및 지역 특징 벡터의 집합을 특징 패턴으로 하여, 속도가 다른 동작들을 인식할 수 있도록 하였다. 또한 속도가 다른 다양한 제스처를 인식하기 위해 다중 AdaBoost 알고리즘을 적용하였다. CART 알고리즘을 이용하여 성공적인 중요 특징 벡터를 확인하고 중요도가 낮은 특징벡터를 제거하는 방식을 적용하면서 분류 성공률이 높은 최적의 특징 벡터를 탐색하였다. 그 결과 24개의 주성분 특징 벡터를 찾았으며, 기존 알고리즘에 비해 낮은 오분류율(3.73%)과 높은 인식률(95.17%)을 지닌 특징 벡터 및 분류기를 설계하였다.

고음질의 음성합성을 위한 퍼지벡터양자화의 퍼지니스 파라메타선정에 관한 연구 (A Study on Fuzziness Parameter Selection in Fuzzy Vector Quantization for High Quality Speech Synthesis)

  • 이진이
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.60-69
    • /
    • 1998
  • 본 눈문에서는 퍼지 벡터양자호를 이용하여 음성을 합성하는 방법을 제시하고,원음에 가까운 합성음을 얻기 위하여 퍼지벡터양자화의 성능을 최적화 하는 Fuzziness갑의 선정방법을 연구한다. 퍼지벡터 양자화를 이용하여 음성을 합성할때, 분석단에서는 입력 음성패턴과 코드북의 음성패턴의 유사도를 나타내는 퍼지 소속함수값을 출력하고, 합성단에서는 분석단에서 얻은 퍼지소속 함수값, fuzziness값, 그리고 FCM(Fuzzy-C-Means) 연산식을 이용하여 음성을 합성한다. 시뮬레이션을 통하여 벡터양자화에 의해 합성된 음성과 퍼지 벡터양자화에 의해 합성된 음성을 코드북의 크기에 따라 비교한 결과, 퍼지벡터양자화를 이용한 음성합성의 성능이 코드북 크기가 절반으로 줄어도 벡터양자화에 의한 성능과 거의 같음을 알수 있다. 이것은 VQ(Vecotr Quantiz-ation)에 의한 음성합성 결과와 같은 성능을 얻기 위해서 퍼지 VQ를 사용하면, 코드북 저장을 위한 메모리의 크기를 절반으로 줄일 수 있음을 의미한다. 그리고 SQNR을 최대로 하는 퍼지 벡터양자화를 얻기 위한 최적 Fuzziness값은 음성분석 프레임의 분산값이 크면 작게 선정해야 하고, 작으면 크게 선정 해야함을 밝혔다. 또한 합성음들을 주파수 영역의 스펙트로그램에서 비교한 결과 포만트 주파수와 피치주파수에서 퍼지 VQ에 의한 합성음이 VQ에 의한 것보다 원 음성에 더 가까움을 알 수 있었다.

  • PDF