• Title/Summary/Keyword: Pattern Recognition

Search Result 2,460, Processing Time 0.031 seconds

Development of Feature Extraction Algorithm for Finger Vein Recognition (지정맥 인식을 위한 특징 검출 알고리즘 개발)

  • Kim, Taehoon;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.345-350
    • /
    • 2018
  • This study is an algorithm for detecting vein pattern features important for finger vein recognition. The feature detection algorithm is important because it greatly affects recognition results in pattern recognition. The recognition rate is degraded because the reference is changed according to the finger position change. In addition, the image obtained by irradiating the finger with infrared light is difficult to separate the image background and the blood vessel pattern, and the detection time is increased because the image preprocessing process is performed. For this purpose, the presented algorithm can be performed without image preprocessing, and the detection time can be reduced. SWDA (Down Slope Trace Waveform) algorithm is applied to the finger vein images to detect the fingertip position and vein pattern. Because of the low infrared transmittance, relatively dark vein images can be detected with minimal detection error. In addition, the fingertip position can be used as a reference in the classification stage to compensate the decrease in the recognition rate. If we apply algorithms proposed to various recognition fields such as palm and wrist, it is expected that it will contribute to improvement of biometric feature detection accuracy and reduction of recognition performance time.

Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal (초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류)

  • Im, Rae-Muk;Sin, Dong-Hwan;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Polynomial Higher Order Neural Network for Shift-invariant Pattern Recognition (위치 변환 패턴 인식을 위한 다항식 고차 뉴럴네트워크)

  • Chung, Jong-Su;Hong, Sung-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3063-3068
    • /
    • 1997
  • In this paper, we have extended the generalization back-propagation algorithm to multi-layer polynomial higher order neural networks. The purpose of this paper is to describe various pattern recognition using polynomial higher-order neural network. And we have applied shift position T-C test pattern for invariant pattern recognition and measured generalization by mirror symmetry problem. simulation result shows that the ability for invariant pattern recognition increase with the proposed technique. Recognition rate of invariant T-C pattern is 90% effective and of mirror symmetry problem is 70% effective when the proposed technique is utilized. These results are much better than those by the conventional methods.

  • PDF

The Robust Derivative Code for Object Recognition

  • Wang, Hainan;Zhang, Baochang;Zheng, Hong;Cao, Yao;Guo, Zhenhua;Qian, Chengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.272-287
    • /
    • 2017
  • This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.

A Real-Time Pattern Recognition for Multifunction Myoelectric Hand Control

  • Chu, Jun-Uk;Moon, In-Hyuk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.842-847
    • /
    • 2005
  • This paper proposes a novel real-time EMG pattern recognition for the control of a multifunction myoelectric hand from four channel EMG signals. To cope with the nonstationary signal property of the EMG, features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a linear-nonlinear feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. We implement a real-time control system for a multifunction virtual hand. From experimental results, we show that all processes, including virtual hand control, are completed within 125 msec, and the proposed method is applicable to real-time myoelectric hand control without an operation time delay.

  • PDF

Pattern Classification of the Strength of Concrete by Feature Parameters and Evidence Accumulation of Ultrasonic Signal (초음파신호의 특징 파라메터 및 증거축적 방법을 이용한 콘크리트 강도 분류)

  • Kim, Se-Dong;Sin, Dong-Hwan;Lee, Yeong-Seok;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1335-1343
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, zero-crossing(ZCR), mean frequency(MEANF), median frequency(MEDF) and autoregressive model coefficient(ARC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

A study on the Automatic Recognition of Hand Printed Hangeul patterns by the Computer (전자계산기에 의한 필기체 한글 인식에 관한 연구)

  • 남궁재찬;김영건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.5 no.1
    • /
    • pp.44-48
    • /
    • 1980
  • This paper proposes a method of the automatic recognition of the handprinted Hanguel patterns. A certain pattern oriented basic letters is normalized to the prototype Hanguel patten by the linking compansation and nomalization algorithm. Tree grammar is used in recognition process. Compared with the previous method. automata processing is simplified and the error is reduced by the new parsing method. This method shows the effectiveness for the constrained pattern. We expect that the new parsing method is very useful for the on-line pattern recognition.

  • PDF

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.