• Title/Summary/Keyword: Pattern Fabrication

Search Result 711, Processing Time 0.03 seconds

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Fabrication of micro structure mold using SLS Rapid Prototyping (SLS형 쾌속조형기를 이용한 미세구조 몰드 제작)

  • 유홍진;김동학;장석원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2004
  • By this time, a mold with nano size pattern was produced using a fabrication of X-ray lithography method and in a m icro size's case it was produced using fabrication of Deep UV lithography. In this paper, we produced mold with 400 $\mu{m}$depth pattern using a new technology of SLS(Selective Laser Sintering) Rapid Prototyping method. In addition to enhance strength and thermal stability, we produced Ni structure with a thickness of 300 $\mu{m}$ on a surface of mold using electro forming method.

  • PDF

Development of 3D Micro-Nano Hybrid Patterns Using Anodized Aluminum and Micro-Indentation (양극산화된 알루미늄과 마이크로 인덴데이션을 이용한 3차원 마이크로-나노 하이브리드 패턴 제작)

  • Kwon, Jong-Tae;Shin, Hong-Gue;Kim, Byeong-Hee;Seo, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1139-1143
    • /
    • 2007
  • A simple method for the fabrication of 3D micro-nano hybrid patterns was presented. In conventional fabrication methods of the micro-nano hybrid patterns, micro-patterns were firstly fabricated and then nano-patterns were formatted on the micro-patterns. Moreover, these micro-nano hybrid patterns could be fabricated on the flat substrate. In this paper, we suggested the fabrication method of 3D micro-nano hybrid patterns using micro-indentation on the anodized aluminum substrate. Since diameter of the hemispherical nano-pattern can be controlled by electrolyte and applied voltage in the anodizing process, we can easily fabricated nano-patterns of diameter of loom to 300nm. Nano-patterns were firstly formatted on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns of diameter of 150nm were fabricated by anodizing process, and then micro-pyramid patterns of the side-length of $50{\mu}m$ were formatted on the nano-patterns using micro-indentation. Finally we successfully replicated 3D micro-nano hybrid patterns by hot-embossing process. 3D micro-nano hybrid patterns can be applied to nano-photonic device and nano-biochip application.

Maskless Pattern Fabrication on Si (100) Surface by Using Nano Indenter with KOH Wet Etching (나노인덴터와 KOH 습식 식각 기술을 병용한 Si(100) 표면의 마스크리스 패턴 제작 기술)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.640-646
    • /
    • 2003
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as potential application to fabricate the surface nanostructures because of its operational versatility and simplicity. The objective of the work is to suggest new mastless pattern fabrication technique using the combination of machining by nanoindenter and KOH wet etching. The scratch option of the nanoindenter is a very promising method for obtaining nanometer scale features on a large size specimen because it has a very wide working area and load range. Sample line patterns were machined on a silicon surface, which has a native oxide on it, by constant load scratch (CLS) of the Nanoindenter with a Berkovich diamond tip, and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structure was made because of masking effect of the affected layer generated by nano-scratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved patterns can be used as a mold that will be used for mass production processes such as nanoimprint or PDMS molding process. All morphological data of scratch traces were scanned using atomic force microscope (AFM).

The Analysis of Chemical Vapor Deposition Characteristics using Focused Ion Beam (FIB-CVD의 가공 공정 특성 분석)

  • Kang E.G.;Choi H.Z.;Choi B.Y.;Hong W.P.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.593-597
    • /
    • 2005
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\phi}$ 10nm and smaller is available. Currently FIB is not being applied in the fabrication of this micro part because of some problems to redeposition and charging effect of the substrate causing reduction of accuracy with regards to shape and productivity. Furthermore, the prediction of the material removal rate information should be required but it has been insufficient for micro part fabrication. The paper have the targets that are FIB-CVD characteristic analysis and minimum line pattern resolution achievement fur 3D micro fabrication. We make conclusions with the analysis of the results of the experiment according to beam current, pattern size and scanning parameters. CVD of 8 pico ampere shows superior CVD yield but CVD of 1318 pico ampere shows the pattern sputtered. And dwell time is dominant parameter relating to CVD yield.

  • PDF

Finite Element Anlaysis of Nanoindentation Process and its Experimental Verification (나노 인덴테이션 공정의 유한요소해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.116-119
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

A Study on Weldability Estirmtion of Laser Welded Specimens by Vision Sensor (비전 센서를 이용한 레이져 용접물의 용접성 평가에 관한 연구)

  • 엄기원;이세헌;이정익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1101-1104
    • /
    • 1995
  • Through welding fabrication, user can feel an surficaial and capable unsatisfaction because of welded defects, Generally speaking, these are called weld defects. For checking these defects effectively without time loss effectively, weldability estimation system setup isan urgent thing for detecting whole specimen quality. In this study, by laser vision camera, catching a rawdata on welded specimen profiles, treating vision processing with these data, qualititative defects are estimated from getting these information at first. At the same time, for detecting quantitative defects, whole specimen weldability estimation is pursued by multifeature pattern recognition, which is a kind of fuzzy pattern recognition. For user friendly, by weldability estimation results are shown each profiles, final reports and visual graphics method, user can easily determined weldability. By applying these system to welding fabrication, these technologies are contribution to on-line weldability estimation.

  • PDF

fabrication of the Microfluidic LOC System with Photodiode (광 다이오드를 가진 Microfluidic LOC 시스템 제작)

  • 김현기;신경식;김용국;이상렬;김태송;양은경;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1097-1102
    • /
    • 2003
  • In this paper, we used only PR as etching mask, while it used usually Cr/AU as etching mask, and in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. we designed microchannel size width max 10um, min 5um depth max 10um, reservoir size max 100um, min 2mm. Fabrication of microfluidic devices in glass substrate by glass wet etching methods and glass to glass fusion bonding. The p-i-n diode has higher sensitivity than photodiode, Considering these results, we fabricated p-i-n diodes on the high resistive(4㏀$.$cm) wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of pin diode can be decreased by the application of finger pattern has parallel resistance structure from 571Ω to 393Ω.

Analysis of Material Deformation Behavior in Nanoindentation Process by using 3D Finite Element Analysis and its Experimental Verification (3차원 유한요소해석을 이용한 나노인덴테이션 공정에서의 소재거동해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1174-1177
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic recover and pile-up was proposed. The indenter was modeled a 3D rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

A Study for Micro-patterning using an Electrostatic Inkjet (정전기력 잉크젯 프린팅을 이용한 마이크로 패터닝에 관한 연구)

  • Kim, Jun-Woo;Choi, Kyoung-Hyun;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1103-1106
    • /
    • 2008
  • For the current display process, the innovative micro pattern fabrication process using semiconductor process should be developed, which requires the expensive equipment, the limited process environment and the expensive optic-sensitive material. The effort of process innovation during past several years ends up the limit of cost reduction. The existing ink jet technologies such as a thermal bubble ink jet printing and a piezo ink jet printing are required to shorten the nozzle diameter in order to apply to the micro pattern fabrication. In this paper, as one way to cope these problems the micro pattern equipment based on the electrostatic ink jet has been developed and carried out some experiments.

  • PDF