• Title/Summary/Keyword: Patrol ship

Search Result 43, Processing Time 0.022 seconds

A Study on the Speed Performance of a Medium Patrol Boat using CFD (CFD를 이용한 중형 경비정의 속도성능 평가)

  • Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.585-591
    • /
    • 2014
  • The primary objective of the current work is to predict speed performance of the medium patrol boat over $F_N=0.5$ employing experimental materials based on the CFD before model tests. In other words, the predicted brake powers according to ship speeds are assessed satisfying the main engine capacity. The subject ships are selected the two different stern hull forms. The flow computation are conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The resistances of the bare-hull are obtained from CFD. Wave patterns, pressures and limiting streamlines on the hull and velocity distribution in the propeller plane for the two hull forms are compared using CFD. The effective powers of the object ships are assessed based on CFD. Resistance increase according to the attached appendages and quasi-propulsive efficiency are employed the experimental datas. Speed performance prediction method concerning high speed vessels like a medium patrol boat is developed employing CFD and experimental data.

Prediction of Crack Growth Lives of an Aged Korean Coast Guard Patrol Ship based on Extended Finite Element Method(XFEM) J-Integral (확장 유한 요소법(XFEM) J-적분을 이용한 노후 순시선의 균열 성장 수명 예측)

  • Kim, Chang-Sik;Li, Chun Bao;Kim, Young Hun;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.335-343
    • /
    • 2017
  • The Newman-Raju formula and contour integral-based finite element analyses(FEAs) have been widely used to assess crack growth rates and residual lives at crack locations in ships or offshore structures, but the Newman-Raju formula is known to be less accurate for the complicated weld details and the conventional FEA-based contour integral approach needs concentrated efforts to construct FEA models. Recently, an extended finite element method(XFEM) has been proposed to reduce those modeling efforts with reliable accuracy. Stress intensity factors(SIFs) from the approaches such as the Newman-Raju formula, conventional FEA-based J-integral, and XFEM-based J-integral were compared for an infinitely long plate with a propagating elliptic crack. It was concluded that the XFEM approach was far reliable in terms of prediction ability of SIFs. Assuming a 25 year-aged coast guard patrol ship had the prescribed cracks at the bracket toes attached to longitudinal stiffeners in way of deck and bottom, SIFs were derived based on the three approaches. To obtain axial tension loads acting on the longitudinal stiffeners, long term hull girder bending moments were assumed to obey Weibull distribution of which two parameters were decided from a reference (DNV, 2014). For the complicated weld details, it was concluded that the XFEM approach could cost-effectively and accurately estimate the crack growth rates and residual lives of ship structures.

Development of Ship Identification and Display System using Unmaned Aerial Vehicle System (무인항공기 시스템을 활용한 선박 식별 및 도시 시스템 개발)

  • Choy, Seong-min;Ko, Yun-ho;Kang, Youngshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.862-870
    • /
    • 2016
  • AIS and V-PASS, which are used for safe navigation and automatic vessel arrival and departure, are mandatory standard equipment installed on all ships. If an aircraft is equipped with a ship identification system using AIS and V-PASS, and then ship identification information is received by a vessel such as a large fishery inspection boat or a patrol ship or a ground control system, we can quickly perform maritime surveillance and disaster response. This paper describes the development of a ship identification and display system using a ship identification device for aircraft. Flight test results and a future application plan are also included.

Machine Classification in Ship Engine Rooms Using Transfer Learning (전이 학습을 이용한 선박 기관실 기기의 분류에 관한 연구)

  • Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.363-368
    • /
    • 2021
  • Ship engine rooms have improved automation systems owing to the advancement of technology. However, there are many variables at sea, such as wind, waves, vibration, and equipment aging, which cause loosening, cutting, and leakage, which are not measured by automated systems. There are cases in which only one engineer is available for patrolling. This entails many risk factors in the engine room, where rotating equipment is operating at high temperature and high pressure. When the engineer patrols, he uses his five senses, with particular high dependence on vision. We hereby present a preliminary study to implement an engine-room patrol robot that detects and informs the machine room while a robot patrols the engine room. Images of ship engine-room equipment were classified using a convolutional neural network (CNN). After constructing the image dataset of the ship engine room, the network was trained with a pre-trained CNN model. Classification performance of the trained model showed high reproducibility. Images were visualized with a class activation map. Although it cannot be generalized because the amount of data was limited, it is thought that if the data of each ship were learned through transfer learning, a model suitable for the characteristics of each ship could be constructed with little time and cost expenditure.

Feasibility Study of a 500-ton Class Patrol Vessel Made of Carbon Fiber Reinforced Polymer (500톤급 탄소섬유 복합소재 경비함 건조가능성 검토)

  • Jang, Jaewon;Lee, Sang-Gyu;Zhang, Haiyang;Maydison, Maydison;Lee, Ju-Hyeong;Oh, Daekyun;Im, Sanghyuk;Kwon, Yongwon;Hwang, Inhyuck;Han, Zhiqiang
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.347-358
    • /
    • 2022
  • Carbon fiber is an excellent structural material, which has been proven in many industries, and the shipbuilding industry is no exception. In particular, in advanced maritime countries, special ships of the Navy and Coast Guard with carbon fiber composite hulls have already been deployed. In Korea, carbon fiber composite materials have been applied to a 10-ton class leisure craft or a 30-ton class patrol, but no research has been done on a hundred of tons or more vessels. In this study, the feasibility study of a 500-ton patrol vessel with a carbon fiber composite hull was conducted through an analysis of similar cases abroad. As a result, it was recognized that the developed hull can be reduced in weight by about 21% to 25% compared to the existing aluminum or FRP hull. It was also confirmed that this light-weight effect can induce the improvement of the maximum speed and the improvement of the operating range via simulations.

Study on the Design of Shaft Strut for Naval Ships with Twin Screw (2축 함정의 스트럿 설계에 관한 고찰)

  • 박명규;신영균
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2002
  • High speed naval ships are configured with open shafts The shafts, bearings, and propellers are supported by shaft struts. Proper design of struts involves issues of structural, vibration, and hydrodynamic analysis and design. Strut arm cavitation in high speed occurs because of a misalignment of the strut arm with the local incident flow. Proper selection of the strut section can minimize the generation of cavitation. This paper describes issues in the design struts and notices based on the design of Patrol Craft and Amphibious Ship.

  • PDF

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

A Study on the Application of Line Array Roll Set Process for the Manufacture of Real Ship Hull Plates (실선체 곡면 제작을 위한 선형 배열 롤 셋 공정의 적용에 관한 연구)

  • Shim, D.S.;Yang, D.Y.;Chung, S.W.;Han, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • The line array roll set(LARS) process, as one of many kinds of incremental forming processes, is a continuous process in which a flat metal plate is formed into a singly or doubly curved plate through successive passes of forming rolls. It was found that the curvature level of the formed plates in the previous study was well over the curvature required in shipyards. This fact shows that the LARS method has good potential for shipbuilding applications. The major purpose of the present study is to estimate experimentally the general applicability of the line array roll set process for the manufacture of ship hull plates. In this study, the target shapes are selected through investigation of the shape classification of ship hull plates that comprise a certain vessel. Forming processes for twisted shapes are analyzed with the finite element method(FEM) and the results of experimental work are presented. On the basis of the experimental and numerical results, the LARS process is applied to the production of real outer hull plates of a small patrol ship.

Space-based Ocean Surveillance and Support Capability: with a Focus on Marine Safety and Security (영해관리를 위한 인공위성 원격탐사기술)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.127-132
    • /
    • 2007
  • From the 1978 Seasat synthetic aperture radar(SAR) to present systems, spaceborne SAR has demonstrated the capability to image the Earth's ocean and land features over broad areas, day and night, and under most weather conditions. The application of SAR for surveillance of commercial fishing grounds can aid in the detection of illegal fishing activities and provides more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which uses the ground-based radar system has some difficulties in detecting moving ships due to the limited detection range of about 10 miles. This paper introduces the field testing results of ship detection by RADARSAT SAR imagery, and proposes a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Anti Air Warfare analysis & Design of the Patrol Killer Experiment Combat System by the Model-Based-Simulation (모델 기반의 시뮬레이션 기법을 이용한 차기 고속정(Patrol Killer Experiment)용 전투체계 대공전 기능의 분석 및 설계)

  • Hwang, Kun-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • Anti-Air Warfare(AAW) functionality of the naval combat system is the key functionality to ensure the ship's survivability. We have applied a novel method using model-based-simulation to analyze and design AAW functionality of the Patrol Killer Experimemnt Combat System. In this approach, an AAW functional model is described with the FSM(Finite State Machine) and directly executed for the AAW simulation. After prototyping using model based simulation, Hardware In Loop Simulation(HILS) is conducted as the AAW functionality is interfaced with the other ones of the combat system for completing the integration of the system components. This incremental and iterative development approach based on the model based simulation can minimize the development risks and costs caused by the system complexity for military system, bringing out the merit of the rapid prototyping.

  • PDF