• 제목/요약/키워드: Patient skin dose

검색결과 147건 처리시간 0.02초

Entrance Surface Dose according to Dose Calculation : Head and Wrist (피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로)

  • Sung, Ho-Jin;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • 제39권3호
    • /
    • pp.305-312
    • /
    • 2016
  • This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiogrphic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator (선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화)

  • Bae, Seong-Cheol;Kim, Jun-Ho;Lee, Choul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제18권1호
    • /
    • pp.21-28
    • /
    • 2006
  • Purpose: The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows elivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. Materials and Methods: The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for $5{\times}5cm\;to\;30{\times}30cm^2$ field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. Results: The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similer build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than $20{\times}20cm^2$ provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. Conclusion: The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose for regions near the skin surface. In this, the optimal spoiler thickeness of 1.2 cm and 1.8 cm were found at SSS of 7 cm for $10{\times}10cm^2$ field. The surface doses were measured 60% and 64% respectively. In addition, It showed so optimal that 94% and 94% at the depth of 0.4 cm and dmax respectively.

  • PDF

Reference dose levels for dental periapical radiography in Chonnam Province (전남 지방에서 치근단방사선사진의 참고 선량 수준)

  • Han, Mi-Ra;Kang, Byung-Cheol;Lee, Jae-Seo;Yoon, Suk-Ja;Kim, Young-Hee
    • Imaging Science in Dentistry
    • /
    • 제39권4호
    • /
    • pp.195-198
    • /
    • 2009
  • Purpose : To establish reference doses of periapical radiography in Chonnam Province, Korea. Materials and Methods : The target-skin distances were measured for dental patient's 1235 exposures including 345 mandibular molar areas. Each periapical radiation exposure was simulated with exactly the same patients exposure parameters and the simulated radiation doses were measured utilizing Mult-O-Meter (Unfors Instruments, Billadal, Sweden). The measurements were done in 44 dental clinics with 49 dental x-ray sets in Chonnam Province for one or two weeks at each dental clinic during year 2006. Results : The third quartile patient surface doses were 2.8 mGy for overall periapical exposures and 3.2 mGy for periapical mandibular molar exposures. Conclusion : The third quartile patient surface doses in Chonnam Province can be used as a guide to accepted clinical practice to reduce patient radiation exposure for the surveyed reference doses were below the recommended dental periapical radiography dose of 7 mGy by IAEA.

  • PDF

A Survey on Patient Dose and Exposure Conditions in Simple Radiography of the Abdomen (복부 단순 X-선 촬영조건과 환자 피폭에 관한 조사 연구)

  • Kim, Sung-Soo;Lee, Sun-Sook;Huh, Joon
    • Journal of radiological science and technology
    • /
    • 제19권2호
    • /
    • pp.59-65
    • /
    • 1996
  • We studied exposure techniques and exposure dose for simple abdomen A-P projection for 41 medical facilities that are located in Seoul area. 1. The range of tube voltage used was 60 to 84 kVp, the average tube voltage used was 74 kVp 2. Only 17% of added filter was used. 3. Tube current mostly used was 200 mA, some of them used 400 mA. 4. The grid ratio mostly was used 10 : 1, 54 % of the rare earth screen was used in most facilities. 5. The average skin entrance dose was 4.15 mSv and the dose range was 1.05 mSv to 11.0 mSv.

  • PDF

Aluminum Equivalent Filter As an Inexpensive Alternative to the Niobium Filter in Reducing Patient Dose (환자에게 주는 선량을 감소시켜주는 니오비움 필터의 대체물로서의 저렴한 알루미늄 필터)

  • Kim, Chang-Sean
    • Progress in Medical Physics
    • /
    • 제6권2호
    • /
    • pp.3-12
    • /
    • 1995
  • A 50 $\mu\textrm{m}$ thick niobium filter and its quantitatively determined aluminum equivalent filter were evaluated for effects on entrance skin dose, image quality, and x-ray tube loading for three different tube voltages in radiology. There was no significant difference in the reducion in entrance skin dose and increase in tube loading between two filters while keeping radiographic contrast on the film. For the clinical use of the aluminum equivalent filter as an alternative to the niobium filter in radiology, aluminum equivalent filter thickness at the mid energy range of radiology, 90 kVp, was measured and the filter was applied to the other kVp values, 73 and 125 kVps, to evaluate the effect on the entrance skin dose and tube loading. There was no significant difference between two filter cases at the selected kVp. The aluminum filter with equivalent thickness can be used as an inexpensive alternative to the niobium filter.

  • PDF

Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion (탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가)

  • Ye-jin Na;Ji-Won Jang;Se-Wuk Jang;Hyo-Kuk Park;Sang-Kyu Lee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제35권
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: The purpose of this study is to find out the dose variation according to thickness of the air gap between the patient's body surface and immobilization device in the treatment plan. Materials and Methods : Four conditions were created by adjusting the air gap thickness using 5 mm bolus, ranging from 0 mm to 3 mm bolus. Immobilization was placed on top in each case. And computed tomography was used to acquire images. The treatment plan that 430 cGy (Relative Biological Effectiveness,RBE) is irradiated 6 times and the dose of 2580 cGy (RBE) is delivered to 95% of Clinical Target Volume (CTV). The dose on CTV was evaluated by Full Width Half Maximum (FWHM) of the lateral dose profile and skin dose was evaluated by Dose Volume Histogram (DVH). Result: Results showed that the FWHM values of the lateral dose profile of CTV were 4.89, 4.86, 5.10, and 5.10 cm. The differences in average values at the on the four conditions were 3.25±1.7 cGy (RBE) among D95% and 1193.5±10.2 cGy (RBE) among D95% respectively. The average skin volume at 1% of the prescription dose was 83.22±4.8%, with no significant differences in both CTV and skin. Conclusion: When creating a solid-type immobilization device for carbon particle therapy, a slight air gap is recommended to ensure that it does not extend beyond the dose application range of the CTV.

  • PDF

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제20권1호
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

Dose Change according to Diameter Change of the Cone for Dental X-ray Apparatus (치과구내용 X선발생기의 조사통 직경 변화에 따른 선량변화)

  • Ahn, Sung-Min;Oh, Jung-Hoan;Choi, Jung-Hyun;Shin, Gwi-Soon;Kim, Sung-Chul
    • The Journal of the Korea Contents Association
    • /
    • 제10권3호
    • /
    • pp.266-270
    • /
    • 2010
  • In case of the Dental X-ray apparatus, the diameter (or the field size) of the tip of the cone should be less than 7 cm according to the Diagnosis Radiation Equipment Safety Management. However, deviation from the field is not expected to be big as photography is made at close range from the skin. Also, as the size of film or digital detector used in intra-oral photography is $3\times4cm^2$, the size mentioned above can be considered to be much bigger. Furthermore, the patient dose by short-distance photography can not be ignored. Therefore, effect on the patient dose, resolution and image qualty was examined by reducing the cone diameter by 0.5 cm interval. The result showed that the patient dose was reduced and a partial improvement in picture contrast was observed. Therefore, it can be concluded from these results that further investigation may be worthwhile in terms of policy.

The Study on the Image Quality and Patient Exposure Dose of Chest Radiography in Korea (흉부촬영시 피폭선량과 화질에 관한 조사연구)

  • Lee, Sun-Sook;Huh, Joon
    • Journal of radiological science and technology
    • /
    • 제18권2호
    • /
    • pp.49-59
    • /
    • 1995
  • Recently, general radiography became to variety because of the continuous development of Inverter type generator and ortho chromatic system. Therefore, we must re-evaluate about patient exposure dose and image quality. I studied about chest radiography which has frequency among general radiography being used during FEB. to AUG., 1994 over 151 medical facilities from medical facilities that are located in Seoul area. The result obtained were as follows ; 1) The rectification method of the generator were employing mainly single phase full wave in 82.8 %, three phase full wave in 11.26 % and Inverter type in 4.64 % and condenser type is 1.32 %. 2) Exposure kV was used below 80 kV in most medical facilities and 21.8 % of the medical facilities was using high tube voltage higher than 120 kV. 3) The exposure time was used below the 0.05 sec in 28.4 %, in 29.8 % of the medical facilities used above 0.1 sec. 4) The usage frequency of the added filter is 15.3 %, and among them compound filter was used only 4 %. 5) Rare earth screen was used in 37.7 %. 6) The average skin entrance dose was 0.25 mSv, the range of dose is $0.05{\sim}0.79\;mSv$ in each medical facilities. 7) The average density of the lung field is 1.76, 0.49 in lung side, 0.30 in mediastinum and 0.37 in heart shadow. Therefore it is required to improve all of these for increasing image quality and reducing patient exposure dose as soon as possible.

  • PDF

Comparative Evaluation of Kerma Area Product and New Fundamental of Kerma Area Product on Radiography (방사선촬영에서 면적선량 및 새로운 실질면적선량 개념의 비교 평가)

  • Choi, Woo Cheol;Kim, Yongmin;Kim, Jung Su
    • Journal of radiological science and technology
    • /
    • 제44권1호
    • /
    • pp.53-58
    • /
    • 2021
  • Kerma Area Product (KAP) is best indicator of radiation monitoring on radiographic examinations. KAP can be measured differently depending on the X-ray irradiation area, air kerma, souce-skin distance, type of equipment, etc. The major factors are exposure area and the air krema. The KAP currently used only considers the exposure area with X-rays and has a problem that KAP is always excessively overestimated from the dose received by an actual subject. Therefore, in this study, in order to measure the accurate KAP, a new area dose calculation that can be calculated by dividing the area where the actual X-ray is irradiated is presented, and the KAP is the real area. We compared and analyzed how much it was overestimated compared to the dose. The Skull AP projection and seven other projection were compared and analyzed, and the KAP was overestimated in each test by 52% to 60%. In this way, the effective KAP (EKAP) calculation developed through this study should be utilized to prevent extra calculation of the existing KAP, and only the accurate patient subject area should be calculated to derive the accurate area dose value. EKAP is helpful for control the patient's exposure dose more finely, and it is useful for the quality control of medical radiation exposure.