• 제목/요약/키워드: Patient entrance dose

검색결과 59건 처리시간 0.027초

Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations

  • Okazaki, Tohru;Hayashi, Hiroaki;Takegami, Kazuki;Okino, Hiroki;Kimoto, Natsumi;Maehata, Itsumi;Kobayashi, Ikuo
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Background: In order to manage the patient exposure dose in X-ray diagnosis, it is preferred to evaluate the entrance skin dose; although there are some evaluations about entrance skin dose, a small number of report has been published for direct measurement of patient. We think that a small-type optically stimulated luminescence (OSL) dosimeter, named nanoDot, can achieve a direct measurement. For evaluations, the corrections of angular and energy dependences play an important role. In this study, we aimed to evaluate the angular and the energy dependences of nanoDot. Materials and Methods: We used commercially available X-ray diagnostic equipment. For angular dependence measurement, a relative response of every 15 degrees of nanoDot was measured in 40-140 kV X-ray. And for energy dependence measurement, mono-energetic characteristic X-rays were generated using several materials by irradiating the diagnostic X-rays, and the nanoDot was irradiated by the characteristic X-rays. We evaluated the measured response in an energy range of 8.1-75.5 keV. In addition, we performed Monte-Carlo simulation to compare experimental results. Results and Discussion: The experimental results were in good agreement with those of Monte-Carlo simulation. The angular dependence of nanoDot was almost steady with the response of 0 degrees except for 90 and 270 degrees. Furthermore, we found that difference of the response of nanoDot, where the nanoDot was irradiated from the randomly set directions, was estimated to be at most 5%. On the other hand, the response of nanoDot varies with the energy of incident X-rays; slightly increased to 20 keV and gradually decreased to 80 keV. These results are valuable to perform the precise evaluation of entrance skin dose with nanoDot in X-ray diagnosis. Conclusion: The influence of angular dependence and energy dependence in X-ray diagnosis is not so large, and the nanoDot OSL dosimeter is considered to be suitable dosimeter for direct measurement of entrance surface dose of patient.

X-선촬영 조건에 따른 피폭선량 조사연구 (A Survey on Enterence Dose by Exposure Factors)

  • 김성수;허준
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제21권2호
    • /
    • pp.19-25
    • /
    • 1998
  • By analyzing each part of expsure condition and the status of an entrance dose which is exposed to patients, this study reached the following conclusion. Since there is no standard in setting up an exposure condition, the technology practiced in each facility varies tremendously, and the entrance dose increased especially due to the improper selection of screen and grid and the shortage of a total amount of filtration in leaching the standard filtration amount. Entrance dose was, generally, turned out to be $2{\sim}3$ times as much as that of advanced countries, and there was big difference between facilities ; approximately 52 times inlateral of cervical vertebrae, 35 times in A-P of femur, 33 times in chest A-P, and 11 times in lumber A-P. Therefore, to minimize the entrance dose of a patient with thegreatest amount of image information, acquirement of technological know-how necessary for standardization of exposure condition for each part can be an important research task.

  • PDF

흉부(胸部) X선검사시(線檢査時) 환자(患者)의 피폭선양(被曝線量)에 대(對)한 연구(硏究) (A Study of the Patient Dose in Chest Radiography)

  • 김창균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제13권1호
    • /
    • pp.3-9
    • /
    • 1990
  • A study was carried out to investigate the technical factors and the patient dose (entrance and absorbed dose) in chest P-A radiography based on the 86 hospitals in Seoul from July 1 to July 30, 1989. As a result of this study, main finding were as follow : 1. 51.2% of the surveyed hospitals made use of $60{\sim}69\;kVp$ as tube voltage in chest radiography 2. The majority of the surveyed(88.3%) have the use of $6{\sim}20\;mAs$ as tube current-time. 3. Percentage absorbed doses in patient were showed more than 90 percent in every tube voltage. 4. Object densities were all much the same in all tube voltages. 5. 48.8% of surveyed entrance doses ranged from $100\;{\mu}Sv$ to $190\;{mu}Sv$, and the mean dose was $158\;{\mu}Sv$.

  • PDF

Average Glandular Dose In Mammography

  • Kim, K.H.;Ryu, Y.C.;Oh, C.H.
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.319-321
    • /
    • 2004
  • The average glandular dose (AGD) is determined by the breast entrance skin exposure, x-ray tube target material, beam quality (half-value layer), breast thickness, and breast composition. Almost breast cancer always arises in glandular breast tissue. As a result, the average radiation absorbed dose to glandular tissue is the preferred measure of the radiation risk associated with mammography. If the normalized average glandular dose is known, the average glandular dose can be computed from the product of the normalized average glandular dose and breast entrance skin exposure. In this study, AGD was calculated by the breast thickness and various x-ray energy (HVL) in 50% glandular 50% adipose breast by Mo.-Rh. assembly. AGD is 84 mrad in compressed 5 cm breast. These results show that as increasing the breast thickness, dose also increases. But as increasing the x-ray tube voltage, dose decreases because of high penetrating ratio through the object. But high tube voltage is reducing the subject contrast. From this result, we have to consider the trade-off between subject contrast of image and dose to the patient and choose proper x-ray energy range.

  • PDF

복부 일반촬영시 초점-필름간거리 변화가 피폭선량 및 화질에 미치는 영향 (Effects on Patient Exposure Dose and Image Quality by Increasing Focal Film Distance in Abdominal Radiography)

  • 김유현;권수일
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제21권1호
    • /
    • pp.52-58
    • /
    • 1998
  • We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.

  • PDF

Prediction of Midline Dose from Entrance and Exit Dose Using OSLD Measurements for Total Body Irradiation

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • 제42권2호
    • /
    • pp.77-82
    • /
    • 2017
  • Background: This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). Materials and Methods: For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. Results and Discussion: The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. Conclusion: The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

Determination of Scattered Radiation to the Thyroid Gland in Dental Cone Beam Computed Tomography

  • Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
    • Journal of Radiation Protection and Research
    • /
    • 제48권1호
    • /
    • pp.15-19
    • /
    • 2023
  • Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.

투시 검사 시 장비에 따른 환자와 시술자의 입사표면선량 연구 (Fluoroscopic the equipment study in accordance with the entrance surface dose study of patients and practitioners)

  • 양해두;홍선숙;성민숙;하동윤
    • 대한디지털의료영상학회논문지
    • /
    • 제15권2호
    • /
    • pp.13-18
    • /
    • 2013
  • Purpose : Fluoroscopy equipment, depending on the type of changes that occur in the patient's position ESD and study the patient's scatter ray of ESD Practitioners considered a comparative analysis was to evaluate the correct dose. Materials and Methods : HITACHI four overtube type TU-8000 Flat Detector and Under tube C-Arm Philips' Multi Diagnost Eleva with Flat Detector type were measured by. Each devices is a measure of the patient's esd randophantom position in tabel unfors Xi multi funtion then fixed to the abdomen fluoroscopy and 10 seconds, spot was measured three times, practitioners of the incident surface dose by considering the patient's scatter ray of the table for each device in the average human stomach 21cm thickness acrylic phantom ($25cm{\times}25cm$) Place the practitioner position after position randophantom unfors Xi multi funtion in the thyroid and stomach 1 minute by a fixed one-time fluoroscopy and measured. Results : 10 seconds and the patient perspective of the c-arm ESD 1.2 times smaller on the AP and oblique measurements were measured in the 6-13 times smaller. spot positions to changes in the measured three times on the AP of the abdomen, ESD is 18 times smaller c-arm measurements and the oblique measurement was 19-30 times smaller. And 1 minute at practitioners fluoroscopy esd in the thyroid 2.12 times the c-arm, chest 1.75 times less the dose was measured. On the AP, depending on the device, but the lack of dose difference oblique positions of the two devices depending on changes in the area due to changes in both the AP than on the dose increased, the difference in dose between the two devices, the maximum difference was approximately 27 times. Conclusion : Fluoroscopic equipment at the time of inspection in accordance with changes in dose according to the patient and the patient's positions changes, because the area of the scatter ray considering the change of dose measurements be made, and study of the equipment according to the characteristics of the efficiency and the exposure of the patient and practitioner is considered smooth study equipment manufacturers that can be done is to build the system and think that is also important. Various fluoroscopy when you check future changes in many factors of change in dose for the equipment in the laboratory system by considering the scatter ray radiation shielding for the management to take advantage of reckless undertube have been utilized as more exposure Reduction activities can help is considered as the direction.

  • PDF

디지털 방사선장비에서 자동노출제어 사용 시 환자피폭선량 감소 방안 (Reducing Methods of Patient's Exposed Dose Using Auto Exposure Control System in Digital Radiography)

  • 신성규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제36권2호
    • /
    • pp.111-122
    • /
    • 2013
  • 본 연구는 디지털방사선장비에서 자동노출제어장치 사용 시 초점-검출기간의 거리, 관전압, 구리필터의 조합을 이용해 환자의 피폭을 감소하고자 시행 하였다. 경추, 요추측면검사, 두개골 전후검사법을 대상으로 관전 압은 60~100 kV, 초점-검출기간의 거리는 100~200 cm으로 변화시키고 구리필터를 추가하면서 입사선량을 측정하고 영상을 평가하였다. 입사선량은 경추측면검사에서 90 kV, 0.3 mmCu, 200 cm일 경우에 0.06 mGy, 요추측면검사에서는 100 kV, 0.3 mmCu, 200 cm일 경우 0.40 mGy, 두개골전후검사에서는 90 kV, 0.3 mmCu, 140 cm일 경우 0.24 mGy로 가장 낮았다. 입사선량은 0.1 mmCu, 150 cm, 70 kV (경추측면검사), 81 kV (요추측면검사)로 변화 시켰을 경우에 가장 큰 폭으로 감소했다. 초점-검출기간의 거리가 늘어날수록 영상의 확대가 줄었고 180 cm 이상에서는 차이가 적었다. 두개골전후검사에서는 80 kV, 0.1 mmCu, 120 cm으로 변화했을 경우에 입사선량이 가장 많이 감소했다. 따라서 자동노출제어장치를 사용할 시 영상의 품질을 고려한 범위에서 최대한 높은 관전압을 사용하고 초점-검출기간의 거리는 검사실의 구조, 방사선사의 신체조건을 감안하여 선 검사대(Wall)에서는 150~200 cm, 누운 검사대(Table)에서는 120~140 cm으로 늘리고 0.1~0.3 mm Cu의 부가필터를 적절히 조합하여 사용하는 것이 영상의 왜곡 방지와 입사선량을 감소시켜 환자의 피폭을 줄일 수 있을 것이다.

선질계수에 의한 피부입사선량 계산법 (Calculation Method of Entrance Skin Dose in X-ray Beam Quality Factor)

  • 김성철;김종일;안성민
    • 한국콘텐츠학회논문지
    • /
    • 제10권2호
    • /
    • pp.258-267
    • /
    • 2010
  • 방사선피폭에 대한 관심이 높아지면서 X선 검사시에 환자에게 조사되는 피폭선량을 정확히 알고 있다는 것은 환자의 불안을 해소하고 또 방사선사나 의사가 피폭선량 경감의식을 향상시키는 데 중요하지만, 임상에서 측정기를 보유하고 있는 시설은 극소수에 불과하다. 본 연구에서는 bit system 및 NDD-M법의 특징을 살려서 우리나라에 사용되고 있는 진단용 X선장치의 출력선량을 직접 측정하여 도표화 하고, X선 출력선량을 아는 경우 또는 모르는 경우 모두에서 적절히 적용할 수 있게 두 가지 방법을 제시하여 실측선량과 비교 실험을 하였다. 그 결과 bit system 및 NDD-M법보다 정확도가 우수한 결과를 나타내어 임상에서 환자가 받는 선량을 더욱 쉽게 알 수 있게 됨으로 방사선관련 종사자들의 의료피폭에 대한 관심이 더욱 높아지고 의료선량감소에 한층 더 노력하는 계기가 될 것으로 사료된다.