• Title/Summary/Keyword: Pathway

Search Result 7,289, Processing Time 0.03 seconds

The overexpression of Arachis hypogaea resveratrol synthase 3 (AhRS3) modified the expression pattern of phenylpropanoid pathway genes in developing rice seeds

  • Lee, Choonseok;Jeong, Namhee;Kim, Dool-Yi;Ok, Hyun-Choong;Choi, Man-Soo;Park, Ki-Do;Kim, Jaehyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.105-105
    • /
    • 2017
  • Our previous study for developing seeds of Iksan 526 (I.526), an inbred line of resveratrol-producing transgenic rice line, showed that, in 20 days after heading (DAH) seeds, resveratrol was almost saturated and accumulation of piceid was highest though the expression of Arachis hypogaea resveratrol synthase 3 (AhRS3, GenBank DQ124938) was highest in 31 DAH seeds. In this study, it was investigated how the overexpression of AhRS3 affects phenylpropanoid pathway genes. p-Coumaroyl-CoA is derived from phenylpropanoid pathway and used as a substrate of AhRS3 reaction for resveratrol production. In 6, 13, 20, 31 and 41 (45 for Dongjin) DAH seeds of I526 and Dongjin, a wild type of I.526, respectively, the expression pattern of phenylpropanoid pathway genes, including phenylalanine ammonia-lyase (PAL: LOC_Os02g41630.2, LOC_Os04g43760.1), cinnamate 4-hydroxylase (C4H: LOC_Os05g25640.1), 4-coumarate-CoA ligase (4CL: LOC_Os02g08100.1), cinnamoyl-CoA reductase (CCR: LOC_Os09g25150.1, LOC_Os08g34280.1), hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT: LOC_Os04g42250.2, LOC_Os02g39850.1) and cinnamyl alcohol dehydrogenase (CAD: LOC_Os02g09490.1), was examined using real time (RT)-PCR. Compared to developing seeds of Dongjin, RT-PCR results showed that the expression pattern of phenylpropanoid pathway genes was modified in developing seeds of I.526. In most genes, except for CAD, of I.526 developing seeds, the gene expression was highest in 20 DAH corresponding to biosynthesis of resveratrol and piceid, i.e. the expression of phenylpropanoid pathway genes was gradually increased by 20 DAH and decreased as seeds develop. Especially, in Dongjin, the highest expression of PALs and 4CL was in 6 DAH and their expression was gradually decreased as seeds develop. These genes expression data also exhibited that, in developing seeds of I.526, phenylpropanoid pathway genes were slightly or significantly (in some genes) upregulated compared to Dongjin. Therefore, the overexpression of AhRS3 changed the expression pattern of phenylpropanoid pathway genes in I.526 developing seeds and this modification for gene expression is closely related to biosynthesis of resveratrol and piceid.

  • PDF

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Changes in Endogenous Gibberellin Contents during Bulb Development Period in the Cold-type Cultivar of Garlic (Allium sativum L.) of Korea (한지형 마늘의 인경 발육 과정에서 내생 지베렐린류의 함량변화)

  • Sohn, Eun-Young;Kim, Yoon-Ha;Kim, Byung-Su;Seo, Dong-Hwan;Lee, Hyun-Suk;Lee, In-Jung
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.750-756
    • /
    • 2010
  • This study was performed to investigate the role of phytohormones in the bulbing of garlic in order to assess the yield and quality. The effect on endogenous plant hormones such as gibberellin (GA) content was also examined during growth stage i.e. clove differentiation to bulbing in garlic. More than 18 gibberellins in garlic were identified with extensive gas chromatograph-mass spectrometry-selected ion monitoring (GC-MS-SIM) quantitative analysis. The results showed that GAs were biosynthesized by both non C-13 hydroxylation pathway (NCH) and early C-13 hydroxylation pathway (ECH) in garlic plant. It was also revealed that NCH pathway leading to synthesis of bioactive $GA_4$ was the more prominent GA biosynthesis pathway than ECH pathway in which bioactive $GA_1$ was synthesized. Total GAs level was gradually increased from clove differentiation to bulbing and later decreased, which portrays the active role of GA in differentiation. The biosynthesis ratio of bioactive $GA_4$ and $GA_1$ concentration was similar to that of total GAs content, which was closely related with bulb development in garlic.

Interspecies Complementation of the LuxR Family Pathway-Specific Regulator Involved in Macrolide Biosynthesis

  • Mo, SangJoon;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • PikD is a widely known pathway-specific regulator for controlling pikromycin production in Streptomyces venezuelae ATCC 15439, which is a representative of the large ATP-binding regulator of the LuxR family (LAL) in Streptomyces sp. RapH and FkbN also belong to the LAL family of transcriptional regulators, which show greatest homology with the ATP-binding motif and helix-turn-helix DNA-binding motif of PikD. Overexpression of pikD and heterologous expression of rapH and fkbN led to enhanced production of pikromycin by approximately 1.8-, 1.6-, and 1.6-fold in S. venezuelae, respectively. Cross-complementation of rapH and fkbN in the pikD deletion mutant (ΔpikD) restored pikromycin and derived macrolactone production. Overall, these results show that heterologous expression of rapH and fkbN leads to the overproduction of pikromycin and its congeners from the pikromycin biosynthetic pathway in S. venezuelae, and they have the same functionality as the pathwayspecific transcriptional activator for the pikromycin biosynthetic pathway in the ΔpikD strain. These results also show extensive "cross-communication" between pathway-specific regulators of streptomycetes and suggest revision of the current paradigm for pathwayspecific versus global regulation of secondary metabolism in Streptomyces species.

The Effects of Korean Cucurbitaceous Plants on the Alkaline Phosphatase Activity Associated with Sonic Hedgehog Pathway

  • Lee, Hwa Jin
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.673-677
    • /
    • 2013
  • In order to examine the effects of Korean cucurbitaceous plants on sonic hedgehog pathway and growth of cancer cells with over-activated hedgehog pathway, we measured the sonic hedgehog conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity and cell viability of pancreatic cancer cell lines by treatment of cucurbitaceous plants. Among the tested cucurbitaceous plants, Actinostemma lobatum Maxim, Cucumis sativus L., Momordica charantia L., Schizopepon bryoniaefolius Maxim and Trichosanthes kirilowii Max, var. japonica Kitam showed the potent inhibitory effects (> 50 % at $20{\mu}g/mL$) on shh-CM induced ALP activity. We also evaluated the cell viability of pancreatic cancer cells treated with the cucurbitaceous plants. The tested cucurbitaceous plants showed the very weak effects on cancer cell proliferation but, T. kirilowii Max, var. japonica Kitam presented the inhibitory effect of 72.7 % on the proliferation of pancreatic cancer cells at $20{\mu}g/mL$. Taken together, we screened the effects of Korean cucurbitaceous plants on shh-CM induced ALP activity and cell viability of pancreatic cancers to search for the modulators of the hedgehog pathway leading to the inhibition of cancer cell proliferation. T. kirilowii Max, var. japonica Kitam, among the tested cucurbitaceous plants, showed the inhibitory effects on the shh-CM induced ALP activity and the proliferation of pancreatic cancer cells.

Functional Characterization of cAMP-Regulated Gene, CAR1, in Cryptococcus neoformans

  • Jung, Kwang-Woo;Maeng, Shin-Ae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The cyclic AMP (cAMP) pathway plays a major role in growth, sexual differentiation, and virulence factor synthesis of pathogenic fungi. In Cryptococcus neoformans, perturbation of the cAMP pathway, such as a deletion in the gene encoding adenylyl cyclase (CAC1), causes defects in the production of virulence factors, including capsule and melanin production, as well as mating. Previously, we performed a comparative transcriptome analysis of the Ras- and cAMP- pathway mutants, which revealed 163 potential cAMP-regulated genes (38 genes at a 2-fold cutoff). The present study characterized the role of one of the cAMP pathway-dependent genes (serotype A identification number CNAG_ 06576.2). The expression patterns were confirmed by Northern blot analysis and the gene was designated cAMP-regulated gene 1 (CAR1). Interestingly, deletion of CAR1 did not affect biosynthesis of any virulence factors and the mating process, unlike the cAMP-signaling deficient cac1$\Delta$ mutant. Furthermore, the car1$\Delta$ mutant exhibited wild-type levels of the stress-response phenotype against diverse environmental cues, indicating that Car1, albeit regulated by the cAMP-pathway, is not essential to confer a cAMP-dependent phenotype in C. neoformans.

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

BIOLOGY ORIENTED TARGET SPECIFIC LITERATURE MINING FOR GPCR PATHWAY EXTRACTION (GPCR 경로 추출을 위한 생물학 기반의 목적지향 텍스트 마이닝 시스템)

  • KIm, Eun-Ju;Jung, Seol-Kyoung;Yi, Eun-Ji;Lee, Gary-Geunbae;Park, Soo-Jun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.86-94
    • /
    • 2003
  • Electronically available biological literature has been accumulated exponentially in the course of time. So, researches on automatically acquiring knowledge from these tremendous data by text mining technology become more and more prosperous. However, most of the previous researches are technology oriented and are not well focused in practical extraction target, hence result in low performance and inconvenience for the bio-researchers to actually use. In this paper, we propose a more biology oriented target domain specific text mining system, that is, POSTECH bio-text mining system (POSBIOTM), for signal transduction pathway extraction, especially for G protein-coupled receptor (GPCR) pathway. To reflect more domain knowledge, we specify the concrete target for pathway extraction and define the minimal pathway domain ontology. Under this conceptual model, POSBIOTM extracts interactions and entities of pathways from the full biological articles using a machine learning oriented extraction method and visualizes the pathways using JDesigner module provided in the system biology workbench (SBW) [14]

  • PDF

Identification of a neural pathway governing satiety in Drosophila

  • Min, Soohong;Chung, Jongkyeong
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.137-138
    • /
    • 2016
  • Satiety cues a feeding animal to cease further ingestion of food, thus protecting it from excessive energy gain. Impaired control of satiety is often associated with feeding-related disorders such as obesity. In our recent study, we reported the identification of a neural pathway that expresses the myoinhibitory peptide (MIP), critical for satiety responses in Drosophila. Targeted silencing of MIP neuron activity strikingly increased the body weight (BW) through elevated food intake. Similarly, genetic disruption of the gene encoding MIP also elevated feeding and BW. Suppressing the MIP pathway behaviorally transformed the satiated flies to feed similar to the starved ones, with augmented sensitivity to food. Conversely, temporal activation of MIP neuron markedly reduced the food intake and BW, and blunted the sensitivity of the starved flies to food as if they have been satiated. Shortly after termination of MIP neuron activation, the reduced BW reverted to the normal level along with a strong feeding rebound. Together our results reveal the switch-like role of the MIP pathway in feeding regulation by controlling satiety.

The Protein Kinase A Pathway Regulates Zearalenone Production by Modulating Alternative ZEB2 Transcription

  • Park, Ae Ran;Fu, Minmin;Shin, Ji Young;Son, Hokyoung;Lee, Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.967-974
    • /
    • 2016
  • Zearalenone (ZEA) is an estrogenic mycotoxin that is produced by several Fusarium species, including Fusarium graminearum. One of the ZEA biosynthetic genes, ZEB2, encodes two isoforms of Zeb2 by alternative transcription, forming an activator (Zeb2L-Zeb2L homooligomer) and an inhibitor (Zeb2L-Zeb2S heterodimer) that directly regulate the ZEA biosynthetic genes in F. graminearum. Cyclic AMP-dependent protein kinase A (PKA) signaling regulates secondary metabolic processes in several filamentous fungi. In this study, we investigated the effects of the PKA signaling pathway on ZEA biosynthesis. Through functional analyses of PKA catalytic and regulatory subunits (CPKs and PKR), we found that the PKA pathway negatively regulates ZEA production. Genetic and biochemical evidence further demonstrated that the PKA pathway specifically represses ZEB2L transcription and also takes part in posttranscriptional regulation of ZEB2L during ZEA production. Our findings reveal the intriguing mechanism that the PKA pathway regulates secondary metabolite production by reprograming alternative transcription.