• Title/Summary/Keyword: Pathogenic Microbiology

검색결과 628건 처리시간 0.021초

서울 시내 자연환경내에 있어서의 병원성 장내세균 분포에 관한 연구 (Bacteriological Studies on the Distribution of Pathogenic Enterobacteria in the Natural Environments in Seoul(1978))

  • 이종훈;고광균;임병욱;문기성
    • 대한미생물학회지
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 1979
  • A bacteriological survey was carried out to get hold of the distribution of pathogenic enteric bacteria in Korea. The total number of 2,013 specimens were obtained from various sources; 1,407 specimens from marine products circulated in the markets, sewage, and 606 rectal swabs from persons. All the specimens were collected in Seoul, Chumunjin(Kangwondo), and Gwangcheon(Chungcheongnam-do) during 1978. The isolation and identification of enteric pathogens from the specimens were performed by means of bacteriological studies. 1. The isolation rates of the pathogenic enterobacteria among the total 2,013 specimens are as follows: Salmonella species 0.05%(1 strain), Shigella species 0.50%(10 strains), and Vibrio parahaemolyticus 0.35%(7 strains). 2. One salmonella strain was isolated from marine products circulated in the market in Seoul. Its serotype was identified as group $C_1$. 3. Ten shigella strains were isolated from various sources: 0.45% from natural environments and 0.05% from rectal swabs. The distribution of shigella serotype was identified as Sh. boydii 90%(9 strains), Sh. sonnei 10%(1 strain). 4. Seven strains of V. parahaemolyticus were isolated from natural environments. In addition, 40 strains of halophilic vibrios nontypable with anti-K antisera were also isolated. Of the 7 strains, the 2 strains were agglutinated with type K-32, each 1 strain of the others with K-17, K-19, K-36, K-39, K-56.

  • PDF

Antifungal Activities of Streptomyces blastmyceticus Strain 12-6 Against Plant Pathogenic Fungi

  • Kim, Yeon Ju;Kim, Jae-heon;Rho, Jae-Young
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.329-334
    • /
    • 2019
  • Streptomyces blastmyceticus strain 12-6 was isolated from a forest soil sample of Cheonan area on the basis of strong antifungal activities against plant pathogenic fungi. Butanol extracts of the cultural filtrates were active against C. acutatum, C. coccodes, C. gloeosporioides, F. oxysporum, and T. roseum. Active fractions were prepared by thin layer chromatography using silica gel plate; 12-6-2 ($R_f$ 0.36), 12-6-3 ($R_f$ 0.44). Scanning electron microscopy showed that the active fractions caused a change in surface texture of fungal spores from smooth surface to wrinkled surface. The lethal effect on the spores of the active fractions varied from 56% to 100%. It was shown that the spores of C. acutatum were more sensitive to the antifungal fractions than the spores of F. oxysporum. Fluorescence staining using TOTO-1 indicated that the antifungal fractions could make the spores more sensitive to the fluorescence dye. Thus, it was suggested that antifungal agents prepared in this study exhibited the antifungal activity by damaging the plasma membrane of both fungal spores and hyphae. Identification of antifungal agents in the active fraction using GC-MS analysis revealed the presence of cyclo-(Leu-Pro) and 9-octadecenamide as major components that have already been known as antifungal substances.

Fungicidal Effect of Resveratrol on Human Infectious Fungi

  • Jung, Hyun-Jun;Hwang, In-Ah;Sung, Woo-Sang;Kang, Hyun-Gu;Kang, Beom-Sik;Seu, Young-Bae;Lee, Dong-Gun
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.557-560
    • /
    • 2005
  • Resveratrol, a phenolic antioxidant found in grapes, has been known to mediate various biological activities on the human body. In the present study, we tested the antifungal a ctivity of resveratrol against human pathogenic fungi before carrying out further studies to elucidate the antifungal mechanism(s) of resveratrol. Resveratrol displayed potent antifungal activity against human pathogenic fungi at concentration levels of 10-20 ${\mu}g$/mL. Furthermore, time-kill curve exhibited fungicidal effect of resveratrol on C. albicans, but the compound had no hemolytic activity against human erythrocytes. The destruction of C. albicans cells by resveratrol was confirmed by scanning electron microscopy. These results suggest that resveratrol could be employed as a therapeutic agent to treat fungal infections of humans.

Development of Genus- and Species-Specific Probe Design System for Pathogen Detection Based on 23S rDNA

  • Park Jun-Hyung;Park Hee-Kyung;Kang Byeong-Chul;Song Eun-Sil;Jang Hyun-Jung;Kim Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.740-747
    • /
    • 2006
  • Amplification by universal consensus sequences in pathogenic bacterial DNA would allow rapid identification of pathogenic bacteria, and amplification of genus-specific and species-specific sequences of pathogenic bacterial DNA might be used for genotyping at the genus and species levels. For design of probes for molecular diagnostics, several tools are available as stand-alone programs or as Web application. However, since most programs can design only a few probe sets at one time, they are not suitable for large-scale and automatic probes design. Therefore, for high-throughput design of specific probes in diagnostic array development, an automated design tool is necessary. Thus, we developed a Web-based automatic system for design of genus-specific and species-specific probes for pathogen detection. The system is available at http://www.miprobe.com.

Virulence of Environmental Urease-Positive and Kanagawa Phenomenon-Negative Vibrio parahaemolyticus

  • Park, Mi-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.330-336
    • /
    • 2004
  • Fifty-two pathogenic Vibrio parahaemolyticus strains were isolated from the environments of Busan and Yeosu, Korea. Forty-three of these strains showed protease activities, whereas 4 strains showed $\alpha / \beta$ hemolysin activities and 6 strains had urease activities. Their pathogenic factors were not overlapping except one strain, which had both protease and hemolysin activities. The 6 urease-positive strains (V. parahaemolyticus YKB4, YKB14, S25, YFB20, YFO21, and YFO22) showed the same biochemical characteristics as a reference strain [V. parahaemolyticus KCTC 2471 (urease-negative)], except for urease production. The 6 urease-positive strains showed different urease activities in their culture supernatant during the growth. The urease activity of S25 increased sharply at the late exponential phase, and was the highest at the initial stationary phase and was kept until the late stationary phase. The other 5 isolates, except C25, showed urease activities at the mid-stationary phase and increased steadily until the late stationary phase, when the urease activity was maximal. To compare the degree of virulence of V. parahaemolyticus with different pathogenic factors, hemolysin, protease, or urease-positive strains were injected into groups of 10 each of ICR mice (7- to l0-week-old males). The lethal rates of urease-positive V. parahaemolyticus, YKB14, YKB4, and S25, were significantly high, being 50, 70, and 80%, respectively. Protease-positive V. parahaemolyticus strains FM39 and FM50 showed 40% and 60% of lethal rate, respectively. Hemolysin-positive V. parahaemolyticus strains S34 and S72 had no mortality, similar to nonpathogenic V. parahaemolyticus FM12.

Characterization of Phage-Resistant Strains Derived from Pseudomonas tolaasii 6264, which Causes Brown Blotch Disease

  • Yun, Yeong-Bae;Han, Ji-Hye;Kim, Young-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.2064-2070
    • /
    • 2018
  • Pseudomonas tolaasii 6264 is a representative strain that causes bacterial blotch disease on the cultivated oyster mushroom, Pleurotus ostreatus. Bacteriophages are able to sterilize the pathogenic P. tolaasii strains, and therefore, they can be applied in creating disease-free mushroom cultivation farms, through a method known as "phage therapy". For successful phage therapy, the characterization of phage-resistant strains is necessary, since they are frequently induced from the original pathogenic bacteria in the presence of phages. When 10 different phages were incubated with P. tolaasii 6264, their corresponding phage-resistant strains were obtained. In this study, changes in pathogenic, genetic, and biochemical characteristics as well as the acquired phage resistance of these strains were investigated. In the phylogenetic analyses, all phage-resistant strains were identical to the original parent strain based on the sequence comparison of 16S rRNA genes. When various phage-resistant strains were examined by three different methods, pitting test, white line test, and hemolytic activity, they were divided into three groups: strains showing all positive results in three tests, two positive in the first two tests, and all negative. Nevertheless, all phage-resistant strains showed that their pathogenic activities were reduced or completely lost.

Synergistic Antibacterial Activity of an Active Compound Derived from Sedum takesimense against Methicillin-Resistant Staphylococcus aureus and Its Clinical Isolates

  • Jeong, Eun-Tak;Park, Seul-Ki;Jo, Du-Min;Khan, Fazlurrahman;Choi, Tae Ho;Yoon, Tae-Mi;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1288-1294
    • /
    • 2021
  • There are a growing number of reports of hospital-acquired infections caused by pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). Many plant products are now being used as a natural means of exploring antimicrobial agents against different types of human pathogenic bacteria. In this research, we sought to isolate and identify an active molecule from Sedum takesimense that has possible antibacterial activity against various clinical isolates of MRSA. NMR analysis revealed that the structure of the HPLC-purified compound was 1,2,4,6-tetra-O-galloyl-glucose. The minimum inhibitory concentration (MIC) of different extract fractions against numerous pathogenic bacteria was determined, and the actively purified compound has potent antibacterial activity against multidrug-resistant pathogenic bacteria, i.e., MRSA and its clinical isolates. In addition, the combination of the active compound and β-lactam antibiotics (e.g., oxacillin) demonstrated synergistic action against MRSA, with a fractional inhibitory concentration (FIC) index of 0.281. The current research revealed an alternative approach to combating pathogenesis caused by multi-drug resistant bacteria using plant materials. Furthermore, using a combination approach in which the active plant-derived compound is combined with antibiotics has proved to be a successful way of destroying pathogens synergistically.

Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential

  • Hwanhlem, Noraphat;Salaipeth, Lakha;Charoensook, Rangsun;Kanjan, Pochanart;Maneerat, Suppasil
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.355-364
    • /
    • 2022
  • From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39℃, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.

Aloe-Emodin-Mediated Photodynamic Therapy Attenuates Sepsis-Associated Toxins in Selected Gram-Positive Bacteria In Vitro

  • Otieno, Woodvine;Liu, Chengcheng;Ji, Yanhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1200-1209
    • /
    • 2021
  • Sepsis is an acute inflammatory response that leads to life-threatening complications if not quickly and adequately treated. Cytolysin, hemolysin, and pneumolysin are toxins produced by gram-positive bacteria and are responsible for resistance to antimicrobial drugs, cause virulence and lead to sepsis. This work assessed the effects of aloe-emodin (AE) and photodynamic therapy (PDT) on sepsis-associated gram-positive bacterial toxins. Standard and antibiotic-resistant Enterococcus faecalis, Staphylococcus aureus, and Streptococcus pneumonia bacterial strains were cultured in the dark with varying AE concentrations and later irradiated with 72 J/cm-2 light. Colony and biofilm formation was determined. CCK-8, Griess reagent reaction, and ELISA assays were done on bacteria-infected RAW264.7 cells to determine the cell viability, NO, and IL-1β and IL-6 pro-inflammatory cytokines responses, respectively. Hemolysis and western blot assays were done to determine the effect of treatment on hemolysis activity and sepsis-associated toxins expressions. AE-mediated PDT reduced bacterial survival in a dose-dependent manner with 32 ㎍/ml of AE almost eliminating their survival. Cell proliferation, NO, IL-1β, and IL-6 cytokines production were also significantly downregulated. Further, the hemolytic activities and expressions of cytolysin, hemolysin, and pneumolysin were significantly reduced following AE-mediated PDT. In conclusion, combined use of AE and light (435 ± 10 nm) inactivates MRSA, S. aureus (ATCC 29213), S. pneumoniae (ATCC 49619), MDR-S. pneumoniae, E. faecalis (ATCC 29212), and VRE (ATCC 51299) in an AE-dose dependent manner. AE and light are also effective in reducing biofilm formations, suppressing pro-inflammatory cytokines, hemolytic activities, and inhibiting the expressions of toxins that cause sepsis.

Seed-borne Pathogenic Bacterium Interact with Air-borne Plant Pathogenic Fungus in Rice Fields

  • Jung, Boknam;Park, Jungwook;Kim, Namgyu;Li, Taiying;Kim, Soyeon;Bartley, Laura E.;Kim, Jinnyun;Kim, Inyoung;Kang, Yoonhee;Yun, Ki-Hoon;Choi, Younghae;Lee, Hyun-Hee;Lee, Kwang Sik;Kim, Bo Yeon;Shon, Jong Cheol;Kim, Won Cheol;Liu, Kwang-Hyeon;Yoon, Dahye;Kim, Suhkman;Ji, Sungyeon;Seo, Young Su;Lee, Jungkwan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.33-33
    • /
    • 2018
  • Air-borne plant pathogenic fungus Fusarium graminearum and seed-borne plant pathogenic bacterium Burkholderia glumae are cause similar disease symptoms in rice heads. Here we showed that two pathogens frequently co-isolated in rice heads and F. graminearum is resistant to toxoflavin produced by B. glumae while other fungal genera are sensitive to the toxin. We have tried to clarify the resistant mechanism of F. graminearum against toxoflavin and the ecological reason of co-existence of the two pathogens in rice. We found that F. graminearum carries resistance to toxoflavin as accumulating lipid in fungal cells. Co-cultivation of two pathogens resulted in increased conidia and enhanced chemical attraction and attachment of the bacterial cells to the fungal conidia. Bacteria physically attached to fungal conidia, which protected bacterium cells from UV light and allowed disease dispersal. Chemotaxis analysis showed that bacterial cells moved toward the fungal exudation compared to a control. Even enhanced the production of phytotoxic trichothecene by the fungal under presence of toxoflavin and disease severity on rice heads was significantly increased by co-inoculation rather than single inoculation. This study suggested that the undisclosed potentiality of air-born infection of bacteria using the fungal spores for survival and dispersal.

  • PDF