• Title/Summary/Keyword: Pathogenic E. coli O-157

Search Result 130, Processing Time 0.033 seconds

Inhibitory Effects of Chlorine Dioxide and a Commercial Chlorine Sanitizer Against Foodborne Pathogens on Lettuce (양상추에 오염된 병원성 미생물에 대한 Chlorine Dioxide 및 상업적 Chlorine 살균소독제의 저해효과 평가)

  • Choi, Mi-Ran;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This study compared the effects of chlorine dioxide and a commercial chlorine sanitizer for inhibiting foodborne pathogens, including Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Escherichia coli O157 : H7, on lettuce leaves. The lettuce samples were inoculated with each cocktail of the three strains, and were then treated with chemical sanitizers [distilled water, 100 ppm commercial chlorine and 50 ppm, 100 ppm, 200 ppm chlorine dioxide ($ClO_2$)] for 1 min, 5 min, and 10 min at room temperature($22{\pm}2^{\circ}C$). Following inoculation of the leaves, initial populations of E. coli O157:H7, L. monocytogenes, and S. Typhimurium were approximately 5.54, 4.47, and 5.12 log CFU/g, respectively these levels were not significantly reduced by the treatment with water,whereas the 100 ppm commercial chlorine sanitizer treatment and $ClO_2$ (at all tested concentrations) were effective at reducing levels of all three pathogens. The treatment of 200 ppm $ClO_2$ for 10 min was most effective at inhibiting the three pathogens, and reduction levels of E. coli O157 : H7, L. monocytogenes, and S. Typhimurium were 2.28, 1.95, 1.76 log, respectively. The inhibitory effect of $ClO_2$ increased with increasing treatment concentration of $ClO_2$, but there was no significant difference by the treatment times. When chemically injured cells of E. coli O157 : H7 and L. monocytogenes and S. Typhimurium were examined by SPRAB and selective overlay methods, respectively, it was observed that the commercial chlorine sanitizer generated greater numbers of injured L. monocytogenes than the $ClO_2$ treatment. From the overall results, $ClO_2$ was more effective at inhibiting pathogenic bacteria compared to the commercial chlorine sanitizer therefore, it has potential to be utilized as an alternative sanitizer to increase the microbial safety of fresh produce.

Comparison of a PCR Kit and a Selective Medium to Detect Pathogenic Bacteria in Eggs (PCR Kit와 선택배지를 이용한 계란의 병원성세균 검출 비교 평가)

  • Kim, Dong-Ho;Yun, Hye-Jeong;Song, Hyun-Pa;Lim, Sang-Yong;Jo, Min-Ho;Jo, Cheo-Run
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.965-970
    • /
    • 2009
  • PCR technology has been widely used to detect and quantify microbial pathogens in foodstuffs, because the technique is rapid, sensitive, and selective. In this study, detection of contaminating pathogenic bacteria on shells of chicken eggs was performed using both a commercial multiplex polymerase chain reaction (PCR) kit and a viable count method employing a selective medium. The PCR kit was capable of detecting Campylobacter jejuni, Escherichia coli O157:H7, Staphylococcus aureus, Bacillus cereus, Vibrio parahaemolyticus, Listeria monocytogenes, Yersinia enterocolitica, Salmonella species, and Shigella species. Using the PCR method, five bacterial species were detected from 30 samples (33.3%) of 90 batches of eggs commercially available in a market. PCR products from B. cereus, S. aureus, L. monocytogenes, Y. enterocolitica, and E. coli O157:H7 were detected, and the numbers and frequencies of positive samples were 17 (18.8%), 12 (13.3%), 15 (16.6%), 16 (17.7%),and 4 (4.4%), respectively. None of any Salmonella species, C. jejuni, V. parahaemolyticus, or Shigella species was detected in this study. The results of PCR testing were confirmed using a typical viable count method employing a selective medium. We suggest that the multiplex polymerase chain reaction (mPCR) assay is a rapid and reliable method for detection of pathogenic bacteria contaminating eggs.

Bactericidal Effects of Food-borne Bacteria using Chlorine Dioxide and Electrolyzed Water (이산화염소수와 전해수를 이용한 식중독균의 살균효과)

  • Lee, Hye-Rin;Kim, Su-Jin;Bang, Woo-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.4
    • /
    • pp.232-237
    • /
    • 2022
  • The present study investigated the bactericidal effects of chlorine dioxide (CD) and electrolyzed water (EW) on pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli O157:H7, by treatment them with CD and EW, respectively, for 0, 2, 4, 6, 8, and 10 min. Additionally, the sensitivities of Gram-positive (B. cereus and S. aureus) and Gram-negative (S. Typhimurium and E. coli O157:H7) to CD and EW were compared, respectively. In CD, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 1.85±0.64, 2.06±0.85, 2.26±0.89, and 2.59±0.40 min, respectively. In EW, the D-values for B. cereus, S. aureus, S. Typhimurium, and E. coli O157:H7 were 2.13±0.32, 1.64±0.64, 1.71±0.32, and 1.86±0.36 min, respectively. All strains decreased consistently for 10 min in both CD and EW. However, the D-values of each bacterial species did not differ significantly between CD and EW (P>0.05). When comparing the bactericidal effect of CD and EW, no difference in D-value was observed, even though the pH and available chlorine concentration of CD were significantly lower than those of EW. These data could be used for the application of CD and EW in the food industry, considering characteristics such as the selection of optimal disinfectants, determination of optimal concentrations, and sensitivity to disinfection targets.

Thermal Resistance Characteristics of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in a Multi-grain Soy Milk Product (레토르트 곡물 두유 내 Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes의 내열특성)

  • Kim, Nam Hee;Koo, Jae Myung;Rhee, Min Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.593-598
    • /
    • 2015
  • This study determined the thermal resistance of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in multi-grain soymilk and proposes processing conditions that meet the national standard for retort food products in Korea. D and z values were calculated from thermal inactivation kinetic curves after heating at 55, 60, and $65^{\circ}C$. The D value for B. cereus at $55^{\circ}C$ was the highest (22.8 min), followed by that for E. coli O157:H7 (18.8 min) and L. monocytogenes (17.6 min). At $60-65^{\circ}C$, the order was L. monocytogenes ($D_{60-65^{\circ}C}=3.4-0.9min$), E. coli O157:H7 (3.0-0.3 min), and B. cereus (1.2-0.3 min). The z values for these species were 5.2, 5.5, and $7.7^{\circ}C$, respectively. The Korean national standard for retort food products was achieved by thermal processing at $124{\pm}2^{\circ}C$ for 0.3-2.2 min. This study provides useful data for ensuring both the microbiological safety and product quality of multi-grain soymilk products.

Antimicrobial Activities of 51 Herbal Formulae on Pathogenic Microorganisms (병원성 미생물에 대한 다빈도 51종 한약처방의 항균 활성 연구)

  • Lee, Nari;Shin, Hyeun-Kyoo;Ha, Hyekyung;Choi, Soon Yong
    • Herbal Formula Science
    • /
    • v.27 no.4
    • /
    • pp.257-267
    • /
    • 2019
  • Objectives: The purpose of this study was to establish experimental evidence for the antimicrobial effects of 51 herbal formulae commonly used in traditional Korean medical institutions. Methods: The antimicrobial activities of herbal formulae were screened using the disc diffusion method against 10 pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Vibrio parahaemolyticus, Escherichia coli DH5α, E. coli O157, Salmonella enteritidis, Yersinia enterocolitica, Shigella flexneri, and Helicobacter pylori). Of the 51 herbal formulae, 13 herbal formulae with antimicrobial activity were selected and their dose-dependency were confirmed. Results: Nine herbal formulae, including Gyeji-tang, Dangguisu-san, Saengmaek-san, Samul-tang, Ssanghwa-tang, Socheongryong-tang, Yukmijihwang-tang, Jakyakgamcho-tang, and Paljung-san, presented antibacterial activity against B. cereus. The effects of Saengmaek-san and Paljung-san was sustained for 48 hr. On L. monocytogenes, Dangguisu-san and Hyangsapyeongwi-san showed antimicrobial activity, but only Hyangsapyeongwi-san maintained the activity for 48 hr. Thirteen herbal formulae such as Galgeun-tang, Gyeji-tang, Dangguisu-san, Mahwang-tang, Banhasasim-tang, Saengmaek-san, Socheongryong-tang, Yukmijihwang-tang, Jakyakgamcho-tang, Cheonwangbosim-dan, Palmijihwang-tang, Paljung-san, and Hwanglyeonhaedok-tang showed antimicrobial activity against V. parahaemolyticus, and the activity was maintained for 48 hr. The 51 herbal formulae did not show any antimicrobial activity against seven strains such as E. coli DH5α, E. coli O157, S. aureus, S. enteritidis, Y. enterocolitica, S. flexneri, and H. pylori. Conclusions: Nine, two, and thirteen herbal formulae showed antimicrobial activities against B. cereus, L. monocytogenes, and V. parahaemolyticus in a dose-dependent manner, respectively. The results of antimicrobial activity of 51 herbal formulae against 10 microorganisms might be used as the basis for new application of herbal formulae.

Evaluation of the Efficiency of E. coli O157: H7 Rapid Detection Kit using Immunochromatography (면역크로마토그래피를 이용한 E. coli O157: H7 신속검출 키트의 유효성 평가)

  • Kwak, Hyo-Sun;Lee, Dong-Ha;Moon, Hee-Sook;Park, Jong-Seok;Woo, Gun-Jo;Kim, Chang-Min
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.3
    • /
    • pp.118-124
    • /
    • 2003
  • For the rapid detection of various pathogenic microorganisms from food sample, various kinds of kits have been developed and commercially available in the markets. With the advantages of speed, accuracy and easiness, the market of these kits has gradually increased for the QC and QA field of food company as well as testing facilities or laboratories. In this study, the characteristics such as the detection limit and the sensitivity of immunochromatographic type of rapid detection kit (Donga Co, Korea, D-kit) for E. coli 0157:H7 developed by monoclonal antibody were examined and also the possibility of application of the kit to food samples was evaluated. The reference kits used for comparison study were Reveal E. coli 0157:H7 (Neogen Co., USA, R-kit) and VIP EHEC kit (Biocontrol Inc., USA, V-kit) occupying major market share. In the detection limit test with the E. coli 0157:H7 reference, both R-kit and D-kit showed a distinct positive reaction in $10^4$/ml and weak positive reaction in $10^3$/ml, whereas V-kit showed a same reaction in 105/ml. Also, it was identified that the culture treated with heat showed more sensitivity than no heat treated culture. The sensitivity test was conducted against 22 isolates of E. coli 0157:H7, 7 strains of non-O157:H7 verotoxin-producing E. coli, 40 strains of E. coli with different O and H antigen type, and 38 strains of non-E. coli Enterobacteriaceae, and all of the test strains except three were showed exactly three were showed exactly the same reaction against three kinds of the tested kits. All the three kinds of kits showed a positive reaction against E. coli O157:H19, E. coli O148:H18 and Salmonella galinarium. We suppose that there might be a similarity in serological property between these three strains and O157:H7. From the test results, it can be concluded that there is (was) no difference between the D-kit developed in this study and R-kit or V-kit based on the detection limit and sensitivity.

Inhibition of Foodborne Pathogens and Spoilage Bacteria and Their Structural Changes by Ethanol Extract of Schizandra chinensis Baillon (오미자 에탄올 추출물에 의한 식품위해성 세균의 증식 억제 및 세포구조 변화)

  • Kim, Se-Ryoung;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • This study analyzed the antibacterial activity of the ethanol extract of Schizandra chinensis Baillon against food pathogenic microorganisms to determine its capabilities as a natural antimicrobial agent. A paper disc diffusion test, minimum inhibitory concentration (MIC) determination, and time-kill assay showed that the ethanol extract strongly inhibits the growth of Listeria monocytogenes, Bacillus cereus, Escherichia coli O157:H7, and Pseudomonas aeruginosa. Release of cytoplasmic ${\beta}$-galactosidase was detected in E. coli, E. coli O157:H7, S. aureus, and P. aeruginosa treated with the ethanol extract. An increase of outer membrane permeability caused by the ethanol extract was also observed. An outward flow of cell constituents was detected in the Gram negative strains treated with the ethanol extract. These results imply that the inner and outer membranes of cells were partially destroyed and cell constituents were released by the treatment of the S. chinensis Baillon ethanol extract. The results of this study indicate that ethanol extract of S. chinensis Baillon evidences a fairly good antibacterial effect.

Microbiological Quality of Agricultural Water in Jeollabuk-do and the Population Changes of Pathogenic Escherichia Coli O157:H7 in Agricultural Water Depending on Temperature and Water Quality (전라북도 지역 농업용수의 미생물학적 특성 및 온도와 수질에 따른 농업용수의 병원성대장균 O157:H7 밀도 변화)

  • Hwang, Injun;Ham, Hyeonheui;Park, Daesoo;Chae, Hyobeen;Kim, Se-Ri;Kim, Hwang-Yong;Kim, Hyun Ju;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.254-261
    • /
    • 2019
  • BACKGROUND: Agricultural water is known to be one of the major routes in bacterial contamination of fresh vegetable. However, there is a lack of fundamental data on the microbial safety of agricultural water in Korea. METHODS AND RESULTS: We investigated the density of indicator bacteria in the surface water samples from 31 sites collected in April, July, and October 2018, while the groundwater samples were collected from 20 sites within Jeollabuk-do in April and July 2018. In surface water, the mean density of coliform, fecal coliform, and Escherichia coli was 2.7±0.55, 1.9±0.71, and 1.4±0.58 log CFU/100 mL, respectively, showing the highest bacterial density in July. For groundwater, the mean density of coliform, fecal coliform, and E. coli was 1.9±0.58, 1.4±0.37, and 1.0±0.33 log CFU/ 100mL, respectively, showing no significant difference between sampling time. The survival of E. coli O157:H7 were prolonged in water with higher organic matter contents such as total nitrogen (TN), and nitrate-nitrogen (NO3-N). The reduction rates of E. coli O157:H7 in the water showed greater in order of 25, 35, 5, and 15℃. CONCLUSION: These results can be utilized as fundamental data for prediction the microbiological contamination of agricultural water and the development of microbial prevention technology.

Combined Treatment with Low Concentrations of Aqueous and Gaseous Chlorine Dioxide Inactivates Escherichia coli O157:H7 and Salmonella Typhimurium Inoculated on Paprika

  • Kim, Hyun-Gyu;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.492-499
    • /
    • 2017
  • Combined treatment with gaseous and aqueous chlorine dioxide ($ClO_2$) was performed to improve the microbiological safety and quality of paprika. A single treatment of 50 ppmv $ClO_2$ gas for 30 min decreased the populations of Escherichia coli O157:H7 and Salmonella Typhimurium by 2.33 and 2.91 log CFU/g, respectively. In addition, a single treatment of aqueous $ClO_2$ (50 ppm) for 5 min decreased these populations by 1.86 and 1.37, respectively. The most dramatic effects were achieved by combined treatment of 50 ppm aqueous and gaseous $ClO_2$ for 30 min, which decreased populations of E. coli O157:H7 and S. Typhimurium by 4.11 and 3.61 log CFU/g, respectively. With regard to the qualities of paprika, no adverse effects were elicited by the combined treatment. Thus, combined treatment with aqueous and gaseous $ClO_2$ is a suitable approach that can be used to improve the microbial safety and quality of paprika.

Development of Biosensors for Rapid Detection of Foodborne Pathogenic Bacteria using CRISPR/Cas (CRISPR/Cas 시스템 기술을 활용한 고위험성 식중독 세균 신속 검출을 위한 바이오센서 개발)

  • Seon Yeong Jo;Jong Pil Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.279-286
    • /
    • 2023
  • Rapid and accurate detection of pathogenic bacteria is crucial for various applications, including public health and food safety. However, existing bacteria detection techniques have several drawbacks as they are inconvenient and require time-consuming procedures and complex machinery. Recently, the precision and versatility of CRISPR/Cas system has been leveraged to design biosensors that offer a more efficient and accurate approach to bacterial detection compared to the existing techniques. Significant research has been focused on developing biosensors based on the CRISPR/Cas system which has shown promise in efficiently detecting pathogenic bacteria or virus. In this review, we present a biosensor based on the CRISPR/Cas system that has been specifically developed to overcome these limitations and detect different pathogenic bacteria effectively including Vibrio parahaemolyticus, Salmonella, E. coli O157:H7, and Listeria monocytogenes. This biosensor takes advantage of the CRISPR/Cas system's precision and versatility for more efficiently accurately detecting bacteria compared to the previous techniques. The biosensor has potential to enhance public health and ensure food safety as the biosensor's design can revolutionize method of detecting pathogenic bacteria. It provides a rapid and reliable method for identifying harmful bacteria and it can aid in early intervention and preventive measures, mitigating the risk of bacterial outbreaks and their associated consequences. Further research and development in this area will lead to development of even more advanced biosensors capable of detecting an even broader range of bacterial pathogens, thereby significantly benefiting various industries and helping in safeguard human health