• 제목/요약/키워드: Pathogenesis

Search Result 2,815, Processing Time 0.036 seconds

Update of genetic susceptibility in patients with Kawasaki disease

  • Yoon, Kyung Lim
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.3
    • /
    • pp.84-88
    • /
    • 2015
  • Kawasaki disease (KD) is an acute systemic vasculitis that predominantly affects children, and can result in coronary artery lesions (CAL). A patient with KD who is resistant to treatment with intravenous immunoglobulin (IVIG) has a higher risk of developing CAL. Incomplete KD has increased in prevalence in recent years, and is another risk factor for the development of CAL. Although the pathogenesis of KD remains unclear, there has been increasing evidence for the role of genetic susceptibility to the disease since it was discovered in 1967. We retrospectively reviewed previous genetic research for known susceptibility genes in the pathogenesis of KD, IVIG resistance, and the development of CAL. This review revealed numerous potential susceptibility genes including genetic polymorphisms of ITPKC, CASP3, the transforming growth factor-${\beta}$ signaling pathway, B lymphoid tyrosine kinase, FCGR2A, KCNN2, and other genes, an imbalance of Th17/Treg, and a range of suggested future treatment options. The results of genetic research may improve our understanding of the pathogenesis of KD, and aid in the discovery of new treatment modalities for high-risk patients with KD.

Msi1-Like (MSIL) Proteins in Fungi

  • Yang, Dong-Hoon;Maeng, Shinae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.

Korean Medicinal Approaches to Recent Study on Cholinergic Urticaria (콜린성 두드러기에 대한 현대 의학적 연구와 한의학적 고찰)

  • Jung, Hye-Jin;Ko, Woo-Shin;Yoon, Hwa-Jung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.4
    • /
    • pp.29-40
    • /
    • 2015
  • Objects : The aim of this study is to introduce latest research trend of cholinergic urticaria and consider results in view of Korean medicine.Methods : We investigate research papers, Chinese and Korean medicinal papers about Cholinergic Urticaria through Pubmed, CNKI(China National Knowledge Infrastructure) and OASIS(Oriental Medicine Advanced Searching Integrated System).Results : The pathogenesis of cholinergic urticaria is supposed to correlate with sweating, considering that many cholinergic urticaria patients are complicated with anhidrosis or hypohidrosis and have sweat hypersensitivity. And on the basis of those outcomes, diverse therapies on cholinergic urticaria are conducted recently.Conclusion : Korean medicinal approaches and treatment on cholinergic urticaria can be significant, accounting that sweating plays a important role in pathogenesis of cholinergic urticaria.

The role of de novo variants in complex and rare diseases pathogenesis

  • Rahman, Mahir;Lee, Woohyung;Choi, Murim
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • De novo variants (DNVs) can arise during parental germ cell formation, fertilization, and the processes of embryogenesis. It is estimated that each individual carries 60-100 such spontaneous variants in the genome, most of them benign. However, a number of recent studies suggested that DNVs contribute to the pathogenesis of a variety of human diseases. Applications of DNVs include aiding in clinical diagnosis and identifying disease-causing genetic factors in patients with atypical symptoms. Therefore, understanding the roles of DNVs in a trio, with healthy parents and an affected offspring, would be crucial in elucidating the genetic mechanism of disease pathogenesis in a personalized manner.

Role of Innate Immunity in Diabetes and Metabolism: Recent Progress in the Study of Inflammasomes

  • Lee, Myung-Shik
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.95-99
    • /
    • 2011
  • Type 1 diabetes is one of the classical examples of organ-specific autoimmune diseases characterized by lymphocytic infiltration or inflammation in pancreatic islets called 'insulitis'. In contrast, type 2 diabetes has been traditionally regarded as a metabolic disorder with a pathogenesis that is totally different from that of type 1 diabetes. However, recent investigation has revealed contribution of chronic inflammation in the pathogenesis of type 2 diabetes. In addition to type 2 diabetes, the role of chronic inflammation is being appreciated in a wide variety of metabolic disorders such as obesity, metabolic syndrome, and atherosclerosis. In this review, we will cover the role of innate immunity in the pathogenesis of metabolic disorders with an emphasis on NLRP3.

The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease

  • Kim, Dong Kyu;MookJung, Inhee
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.679-688
    • /
    • 2019
  • The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer's disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure of mitochondria, an organelle involved in diverse biological processes as well as energy production, maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria are involved in different biological processes depending on the specific functions of each cell type in the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in each cell type to AD pathogenesis.

Molecular Pathogenesis of Vibrio vulnificus

  • Gulig Paul A.;Bourdage Keri L.;Starks Angela M.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.118-131
    • /
    • 2005
  • Vibrio vulnificus is an opportunistic pathogen of humans that has the capability of causing rare, yet devastating disease. The bacteria are naturally present in estuarine environments and frequently contaminate seafoods. Within days of consuming uncooked, contaminated seafood, predisposed individuals can succumb to sepsis. Additionally, in otherwise healthy people, V. vulnificus causes wound infection that can require amputation or lead to sepsis. These diseases share the characteristics that the bacteria multiply extremely rapidly in host tissues and cause extensive damage. Despite the analysis of virulence for over 20 years using a combination of animal and cell culture models, surprisingly little is known about the mechanisms by which V. vulnificus causes disease. This is in part because of differences observed using animal models that involve infection with bacteria versus injection of toxins. However, the increasing use of genetic analysis coupled with detailed animal models is revealing new insight into the pathogenesis of V. vulnificus disease.

Metabolic influence on macrophage polarization and pathogenesis

  • Thapa, Bikash;Lee, Keunwook
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.360-372
    • /
    • 2019
  • Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology.