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Type 1 diabetes is one of the classical examples of or-
gan-specific autoimmune diseases characterized by lympho-
cytic infiltration or inflammation in pancreatic islets called 
‘insulitis’. In contrast, type 2 diabetes has been traditionally 
regarded as a metabolic disorder with a pathogenesis that is 
totally different from that of type 1 diabetes. However, re-
cent investigation has revealed contribution of chronic in-
flammation in the pathogenesis of type 2 diabetes. In addi-
tion to type 2 diabetes, the role of chronic inflammation is be-
ing appreciated in a wide variety of metabolic disorders such 
as obesity, metabolic syndrome, and atherosclerosis. In this 
review, we will cover the role of innate immunity in the patho-
genesis of metabolic disorders with an emphasis on NLRP3.
[Immune Network 2011;11(2):95-99]

INTRODUCTION

Researches on inflammation have been greatly facilitated by 

the discovery and characterization of innate immune re-

ceptors such as TLR, NLR, RLR or CLR. Role of TLR, the first 

immune receptor characterized, in type 2 diabetes, obesity or 

atherosclerosis has been suggested in several previous papers 

(1,2) which can explain chronic inflammation in type 2 dia-

betes (3,4). In contrast, the role for NLR in metabolic dis-

orders is being recognized only recently. Among NLRs com-

prising more than 20 members, NLRP family members may 

be particularly relevant for metabolic disorders because NLRP, 

as a constituent of inflammasome, plays a vital role in the 

maturation and release of IL-1β (5). IL-1β has been im-

plicated in both type 1 and type 2 diabetes (6-8), and in-

flammasome is an essential component of the intracellular ma-

chinery for IL-1β induction and maturation in response to 

exogenous or endogenous stimuli (“danger signal”) (9).

NLRP3 AS A SENSOR OF “DANGER SIGNAL”

Activation of NLRP has been intensely investigated. However, 

certain steps of NLRP activation are not clearly understood. 

After contact with DAMP (death-associated molecular pattern) 

or PAMP (pathogen-associated molecular pattern), NLRP 

self-oligomerizes through NACHT domain to form a high-mo-

lecular weight flatform. In the case of NLRP2 or NLRP3, they 

bind to an adaptor protein called ASC which has both PYD 

domain and CARD domain, and sometimes is also called 

PYCARD. Upon stimulation, PYD domain of NLRP2 or 3 asso-

ciates with PYD domain of ASC through another homotypic 

interaction. Then, CARD domain of ASC entices CARD do-

main of procaspase-1. Homotypic clustering of procaspase-1 

induces self-cleavage of the ‘pro’ domain and formation of 

the active caspase-1 p10/p20 tetramer, which then processes 

pro-IL-1β to IL-1β by cleavage of another ‘pro’ sequence 

(10) (Fig. 1). While the molecular mechanism downstream 

of NLRP oligomerization is well characterized, intracellular se-

quence leading to oligomerization of NLRP remains to be 

elucidated. Cytosolic delivery of PAMP through pannexin-1 

hemichannel interacting with P2X7 ATP receptor, K
＋

 efflux, 

lysosomal injury and reactive oxygen species (ROS) formation 

have been implicated as the proximal events leading to NLRP 

oligomerization (10,11) (Fig. 1). Recent papers have pre-

sented evidence suggesting the role of mitochondria as a 
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Figure 1. Pathway for NLRP3 activation. As there is no evidence of direct physical contact between ligands and NLRP3, three major pathways 
for NLRP3 activation have been proposed such as direct cytoplasmic delivery of bacterial ligands through pannexin-1 hemichannel, ROS 
production, and lysosomal injury by crystalline/particulate ligands such as cholesterol crystal or monosodium urate.

source of ROS leading to NLRP stimulation (12,13). A recent 

paper claimed the role of ROS in the dissociation of TXNIP 

from thioredoxin leading to its binding to NLRP3 and in-

flammasome activation (14). An interesting point in the rela-

tionship between inflammasome and metabolism is that gly-

buride, a well-known drug of sulfonylurea class for type 2 

diabetes inhibits NLRP3 stimulation, which is independent of 

its effect on ATP-sensitive KATP channel (15). Effect of gly-

buride on sepsis has also been reported. Considering the pro-

posed role of NLRP3 activation in type 2 diabetes and meta-

bolic syndrome (see below), it will be an intriguing question 

how much of the effect of glyburide on type 2 diabetes 

would be explained by NLRP3 inhibition. While the role for 

NLRP3 is most prominent in the development of in-

flammation, its role in the protection of epithelial cells has 

also been demonstrated (16), which is reminiscent of the pre-

viously reported role of TLR in the protection of intestinal epi-

thelial cells (17).

NLRP3 AND INSULIN RESISTANCE

Several papers have implicated diverse arms of innate im-

munity such as TLR, eosinophils or mast cells in insulin resist-

ance (4,18,19). A recent paper reported the role of NLRP3 

in obesity-induced inflammation and insulin resistance. In 

that paper, positive correlation between IL-1β (or NLRP3) 
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mRNA expression and body weight of calorie-restricted mice 

was shown. Improved glucose tolerance was also found in 

obese mice with targeted disruption of NLRP3. IL-1β release 

in response to ceramide in conjunction with LPS was also ab-

rogated in NLRP3-knockout macrophages (20). However, it 

is still not clear if C2 ceramide used in that experiment could 

represent lipids associated with obesity in vivo. It also re-

mains to be clarified what lipid intermediates or metabolites 

are able to activate inflammasome in obese subjects.

NLRL3 AND PANCREATIC ISLET CELLS

A recent paper reported the expression of NLRP3, ASC and 

caspase-1 in islet cells. Decreased IL-1β release from NLRP3- 

knockout islet cells was also shown. NLRP3-knockout mice 

showed improved glucose profile after high-fat diet, which 

was ascribed to the attenuated IL-1β release from islet cells 

of NLRP3-knockout mice (14). Hyperglycemia-induced IL-1β 

release was also ascribed to increased ROS in response to hy-

perglycemia, induction of TXNIP and subsequent activation 

of NLRP3. However, it is not clear whether the source of IL-1β 

from islet cells is β-cells or immune cells in islets such as 

macrophages. Altered glucose metabolism in TXNIP-knockout 

mice might be also due to causes other than NLRP3 activation 

(21).

  A recent report showed activation of NLRP3 by islet amy-

loid polypeptide (IAPP). Human diabetes and murine dia-

betes differ from each other in several points. One of the fun-

damental differences between them is frequent deposition of 

amyloid in islets of human type 2 diabetes but not in those 

of murine diabetes. Such a difference is due to the difference 

in amino acid sequence of IAPP. Human IAPP, the major 

component of islet amyloid, is amyloidogenic while murine 

one is not, which is attributable to the difference in their ami-

no acid sequences. Masters et al. showed that human-type 

IAPP is able to induce NLRP3 activation and IL-1β release 

from dendritic cells or macrophages primed with LPS or mini-

mally modified LDL (mmLDL), an agonist for TLR4 (22). Such 

results are similar to the activation of NLRP3 of microglial 

cells by amyloid-β via lysosomal injury (23); however, the 

role of TXNIP was not evident in IAPP-induced NLRP3 

activation.

NLRP3 IN OTHER TYPES OF METABOLIC 
DISORDERS

Atherosclerosis is also a well-known metabolic disease that 

has prominent inflammatory features. Role of innate im-

munity in the pathogenesis of atherosclerosis has been dem-

onstrated in several TLR- or MyD88-knockout animals (3). 

Recent papers showed the role of NLRP3 activation by choles-

terol crystals in the development of atherosclerosis (24) (Fig. 

1). Lysosomal injury after phagocytosis of cholesterol crystals 

appears to be responsible for the activation of NLRP3. 

Besides cholesterol crystal, the role for mmLDL crystal in the 

priming of cells for NLRP3 activation was also suggested. In 

that case, mmLDL may be able to act as both signal 1 

(priming signal) and signal for NLRP3 activation (24). Gout 

is also one of the classical examples related to NLRP3 

activation. Gout is, in fact, one of the first metabolic diseases 

that involve activation of inflammasome. Crystals of mono-

sodium urate and calcium pyrophosphate dehydrate were 

identified as the signals that are capable of NLRP3 activation 

in gout and pseudogout, respectively (25) (Fig. 1).

ROLF OF INNATE IMMUNITY IN TYPE 1 DIABETES

Type 1 diabetes is a well-known autoimmune disease that is 

characterized by a specific adaptive immunity against β-cell 

antigens. However, innate immunity plays a crucial role in 

the establishment of specific B- and T-cell immunity and its 

maintenance (26,27). We have reported that TLR, particularly 

TLR2, plays a critical role in the priming of naïve diabeto-

genic T cells in the pancreatic lymph nodes by sensing β-cell 

death (28) that occurs physiologically during the organo-

genesis of the pancreas (27). A recent study also showed pos-

sible role of innate immunity other than TLR in the develop-

ment of type 1 diabetes by demonstrating the development 

of type 1 diabetes in MyD88-knockout NOD mice when they 

were rendered germ-free (29). However, it is not clear which 

types of innate immune receptors are involved in the devel-

opment of autoimmunity in those MyD88-knockout mice. It 

is also not known which types of innate immunity play roles 

in the apparent disease inhibition by intestinal microbiota in 

those mice. The role for NLRP3 or NLR has not been demon-

strated in the pathogenesis of type 1 diabetes. Further studies 

will be necessary to understand the disease-promoting or 

-inhibitory activity of NLR in type 1 diabetes.
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CONCLUSION

Pathogenetic role of innate immunity is being generally ap-

preciated in diabetes and metabolism that had been consid-

ered as pure metabolic disorders. TLR was the first innate im-

mune receptors that have been studied in those diseases. 

Recent studies have shown important roles of non-TLR innate 

immune receptors, particularly NLRP3 in diverse metabolic 

disorders such as diabetes, atherosclerosis, obesity and gout. 

Further studies will be necessary to identify endogenous or 

exogenous ligands or activating signals for innate immune re-

ceptors involved in the pathogenesis of such diseases and to 

develop therapeutic agents based on the novel immunological 

principles. 
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