• Title/Summary/Keyword: Pathogen Detection

Search Result 328, Processing Time 0.022 seconds

Future Perspectives on New Approaches in Pathogen Detection

  • Li, Peng;Ho, Bow;Ding, Jeak Ling
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.165-171
    • /
    • 2015
  • Microbial pathogens are responsible for most of the rapidly-spreading deadly infectious diseases against humans. Thus, there is an urgent need for efficient and rapid detection methods for infectious microorganisms. The detection methods should not only be targeted and specific, but they have to be encompassing of potential changes of the pathogen as it evolves and mutates quickly during an epidemic or pandemic. The existing diagnostics such as the antibody-based ELISA immunoassay and PCR methods are too selective and narrowly focused; they are insufficient to capture newly evolved mutant strains of the pathogen. Here, we introduce a fresh perspective on some new technologies, including aptamers and next generation sequencing for pathogen detection. These technologies are not in their infancy; they are reasonably mature and ready, and they hold great promise for unparalleled applications in pathogen detection.

Deep Neural Network Technology for Analyzing PDA Colorimetric Transition Sensors in Pathogen Detection (병원균 검출용 PDA 색 전이 센서 분석을 위한 심층신경망 기술)

  • Junhyeon Jeon;Huisoo Jang;Mingyeong Shin;Tae-Joon Jeon;Sun Min Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • In this study, we propose a novel approach for rapid and accurate pathogen detection by integrating Polydiacetylene (PDA) hydrogel sensors with advanced deep learning algorithms and visualization techniques. PDA hydrogel sensors exhibit a color transition in the presence of pathogens, enabling straightforward and quick pathogen detection. We developed a reliable pathogen detection system that combines deep neural network algorithms with color quantification technology for image-based analysis. This image-based system retains the ease of pathogen detection offered by PDA sensors while deriving quantified color standards to overcome the limitations of human visual assessment, enhancing reliability. This advancement contributes to public health and the development and application of pathogen detection technology.

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF

The Importance of FACS Analysis in the Development of Aptamers Specific to Pathogens

  • Moon, Ji-Hea;Kim, Giyoung;Park, Saet Byeol;Lim, Jongguk;Mo, Changyeun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.111-114
    • /
    • 2014
  • Purpose: This review aims to introduce aptamers and the methods of its development to improve the sensitivity and selectivity to target bacteria. In this review, we have highlighted current developments and directions in the pathogen detection based on aptamers. Background: Aptamers, the specific nucleic acid sequences, can bind to targets with high affinity and specificity. Some of researches on the use of aptamers for the detection of pathogen have been reported in recent years. Aptamers have more applicability than antibodies for the development of pathogen detection using biosensor; such as easy to synthesis and labeling, lack of immunogenicity, and a low cost of production. However, only few reports on the development and use of aptamers for the detection of pathogen have been published. Review: Aptamers specific to pathogen are obtained by whole-cell systematic evolution of ligands by exponential enrichment (SELEX) process. SELEX process is composed of screening random oligonucleotide bound with target cells, multiple separation and amplification of nucleic acids, final identification of the best sequences. For improving those affinity and selectivity to target bacteria, optimization of multiple separating process to remove unbounded oligonucleotides from aptamer candidates and sorting process by flow cytometry are required.

Trends of Deep UV-LED Technology for the Pathogen and Biotoxin Aerosol Detection System (병원균 및 생물독소 탐지시스템을 위한 원자외선 LED 기술동향)

  • Chong, Eugene;Jeong, Young-Su;Choi, Kibong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • The humans are under attack involving the hazardous environment and pathogen/biotoxin aerosol that is realistic concerned. A portable, fast, reliable, and cheap Pathogen and Biotoxin Aerosol threat Detection(PBAD) trigger is an important technology for detect-to-protect and detect-to-treat system because the man-made biological terror is a fast and lethal infection. The ultraviolet C(UVC) wavelengths light source is key issue for PBAD that is sensitive because of strong fluorescence cross section from fluorescent amino acids in proteins such as tryptophan and tyrosine. The UVC-light emitting diode(LED) is emerging light source technology as alternative to laser or lamps as they offer several advantages. This paper discussed about the design consideration of UVC-LED for the PBAD system. The UVC-LED and PBAD technology, currently available or in development, are also discussed.

Development of DNA Microarray for Pathogen Detection

  • Yoo, Seung Min;Keum, Ki Chang;Yoo, So Young;Choi, Jun Yong;Chang, Kyung Hee;Yoo, Nae Choon;Yoo, Won Min;Kim, June Myung;Lee, Duke;Lee, Sang Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.93-99
    • /
    • 2004
  • Pathogens pose a significant threat to humans, animals, and plants. Consequently, a considerable effort has been devoted to developing rapid, convenient, and accurate assays for the detection of these unfavorable organisms. Recently, DNA-microarray based technology is receiving much attention as a powerful tool for pathogen detection. After the target gene is first selected for the unique identification of microorganisms, species-specific probes are designed through bioinformatic analysis of the sequences, which uses the info rmation present in the databases. DNA samples, which were obtained from reference and/or clinical isolates, are properly processed and hybridized with species-specific probes that are immobilized on the surface of the microarray for fluorescent detection. In this study, we review the methods and strategies for the development of DNA microarray for pathogen detection, with the focus on probe design.

Specific and Sensitive Primers Developed by Comparative Genomics to Detect Bacterial Pathogens in Grains

  • Baek, Kwang Yeol;Lee, Hyun-Hee;Son, Geun Ju;Lee, Pyeong An;Roy, Nazish;Seo, Young-Su;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.104-112
    • /
    • 2018
  • Accurate and rapid detection of bacterial plant pathogen is the first step toward disease management and prevention of pathogen spread. Bacterial plant pathogens Clavibacter michiganensis subsp. nebraskensis (Cmn), Pantoea stewartii subsp. stewartii (Pss), and Rathayibacter tritici (Rt) cause Goss's bacterial wilt and blight of maize, Stewart's wilt of maize and spike blight of wheat and barley, respectively. The bacterial diseases are not globally distributed and not present in Korea. This study adopted comparative genomics approach and aimed to develop specific primer pairs to detect these three bacterial pathogens. Genome comparison among target pathogens and their closely related bacterial species generated 15-20 candidate primer pairs per bacterial pathogen. The primer pairs were assessed by a conventional PCR for specificity against 33 species of Clavibacter, Pantoea, Rathayibacter, Pectobacterium, Curtobacterium. The investigation for specificity and sensitivity of the primer pairs allowed final selection of one or two primer pairs per bacterial pathogens. In our assay condition, a detection limit of Pss and Cmn was $2pg/{\mu}l$ of genomic DNA per PCR reaction, while the detection limit for Rt primers was higher. The selected primers could also detect bacterial cells up to $8.8{\times}10^3cfu$ to $7.84{\times}10^4cfu$ per gram of grain seeds artificially infected with corresponding bacterial pathogens. The primer pairs and PCR assay developed in this study provide an accurate and rapid detection method for three bacterial pathogens of grains, which can be used to investigate bacteria contamination in grain seeds and to ultimately prevent pathogen dissemination over countries.

A Modified Quantum Dot-Based Dot Blot Assay for Rapid Detection of Fish Pathogen Vibrio anguillarum

  • Zhang, Yang;Xiao, Jingfan;Wang, Qiyao;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1457-1463
    • /
    • 2016
  • Vibrio anguillarum, a devastating pathogen causing vibriosis among marine fish, is prevailing in worldwide fishery industries and accounts for grievous economic losses. Therefore, a rapid on-site detection and diagnostic technique for this pathogen is in urgent need. In this study, two mouse monoclonal antibodies (MAbs) against V. anguillarum, 6B3-C5 and 8G3-B5, were generated by using hybridoma technology and their isotypes were characterized. MAb 6B3-C5 was chosen as the detector antibody and conjugated with quantum dots. Based on MAb 6B3-C5 labeled with quantum dots, a modified dot blot assay was developed for the on-site determination of V. anguillarum. It was found that the method had no cross-reactivity with other than V. anguillarum bacteria. The detection limit (LOD) for V. anguillarum was 1 × 103 CFU/ml in cultured bacterial suspension samples, which was a 100-fold higher sensitivity than the reported colloidal gold immunochromatographic test strip. When V. anguillarum was mixed with turbot tissue homogenates, the LOD was 1 × 103 CFU/ml, suggesting that tissue homogenates did not influence the detection capabilities. Preenrichment with the tissue homogenates for 12 h could raise the LOD up to 1 × 102 CFU/ml, confirming the reliability of the method.

Emulsion PCR Improves the Specificity and Sensitivity of PCR-based Pathogen Detection (식중독균 검출의 민감도 향상을 위한 Emulsion PCR 적용)

  • Chai, Changhoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Emulsion PCR (ePCR) has recently gained interest in the areas of food safety and biotechnology owing to its highly specific and sensitive performance in the amplification of target DNA. To facilitate the applications of ePCR to food safety and biotechnology, this paper describes the principles of ePCR and the factors that should be considered in designing ePCR. In addition, current research and applications related to ePCR are discussed.