DOI QR코드

DOI QR Code

The Importance of FACS Analysis in the Development of Aptamers Specific to Pathogens

  • Received : 2014.02.25
  • Accepted : 2014.05.27
  • Published : 2014.06.01

Abstract

Purpose: This review aims to introduce aptamers and the methods of its development to improve the sensitivity and selectivity to target bacteria. In this review, we have highlighted current developments and directions in the pathogen detection based on aptamers. Background: Aptamers, the specific nucleic acid sequences, can bind to targets with high affinity and specificity. Some of researches on the use of aptamers for the detection of pathogen have been reported in recent years. Aptamers have more applicability than antibodies for the development of pathogen detection using biosensor; such as easy to synthesis and labeling, lack of immunogenicity, and a low cost of production. However, only few reports on the development and use of aptamers for the detection of pathogen have been published. Review: Aptamers specific to pathogen are obtained by whole-cell systematic evolution of ligands by exponential enrichment (SELEX) process. SELEX process is composed of screening random oligonucleotide bound with target cells, multiple separation and amplification of nucleic acids, final identification of the best sequences. For improving those affinity and selectivity to target bacteria, optimization of multiple separating process to remove unbounded oligonucleotides from aptamer candidates and sorting process by flow cytometry are required.

Keywords

References

  1. Arora, P., Sindhu, A., Kaur, H., Dilbaghi, N and A. Chaudhury. 2013. An overview of transducers as platform for the rapid detection of foodborne pathogens. Applied Microbiology and Biotechnology 97:1829-40. https://doi.org/10.1007/s00253-013-4692-5
  2. Cibiel, A., Dupont, D. M and F. Duconge. 2011. Methods to identify aptamers against cell surface biomarker. Pharmaceuticals 4:1216-35. https://doi.org/10.3390/ph4091216
  3. Hamula, C. L. A., Zhang, H., Li, F., Wang, Z., Le, X. C and X. F. Li. 2011. Selection and analytical applications of aptamers binding microbial pathogens. Trends in Analytical Chemistry 30(10):1587-97. https://doi.org/10.1016/j.trac.2011.08.006
  4. James, W. 2006. Aptamers. In:Encyclopedia of Analytical Chemistry, ed. R.A. Meyers, pp. 1-23. Oxford, UK: John Willey & Sons Ltd.
  5. Keefe, A. D., Pai, S and A. Ellington. 2010. Aptamers as therapeutics. Nature Reviews Drug Discovery 9:537-550. https://doi.org/10.1038/nrd3141
  6. Kim, G., Moon, J. H., Hahm, B. K., Morgan, M., Bhunia, A and A. S. Om. 2009. Rapid detection of Salmonella Enteritidis in pork samples with impedimetric biosensor: effect of electrode spacing on sensitivity. Food Science and Biotechnology 18(1):89-94.
  7. Kim, G., Yang, G., Park, S. B., Kim, Y. H., Lee, K. J., Son, J. Y., Kim, H. J and S. R. Lee. 2011. Rapid detection kit for Salmonella Typhimurium. Journal of Biosystems Engineering 34:140-6. https://doi.org/10.5307/JBE.2009.34.3.140
  8. Mayer, G., Ahmed, M. S. L., Dolf, A., Endl, E., Knolle, P. A and M. Famulok. 2010. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nature Protocols 5(12):1993-2004. https://doi.org/10.1038/nprot.2010.163
  9. Meyer, M., Scheper, T and J. G. Walter. 2013. Aptamers: versatile probes for flow cytometry. Applied Microbiology and Biotechnology 97:7097-109. https://doi.org/10.1007/s00253-013-5070-z
  10. Moon, J., Kim, G., Lee, S and S. Park. 2013. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis. Journal of Microbiological Methods 95:162-6. https://doi.org/10.1016/j.mimet.2013.08.005
  11. Ohuchi, S. 2012. Cell-SELEX Technology. Bioresearch 1(6):265-72.
  12. Sefah, K., Shangguan, D., Xiong, X., O'Donoghue, M. B and W. Tan. 2010. Development of DNA aptamers using cell-SELEX. Nature Protocols 5(6):1169-85. https://doi.org/10.1038/nprot.2010.66
  13. Song S., Wang, L., Li, J., Zhao, J and C. Fan. 2008. Aptamerbased biosensors. Trends in Analytical Chemistry 27(2):108-117. https://doi.org/10.1016/j.trac.2007.12.004
  14. Stoltenburg, R., Reinemann, C and B. Strehlitz. 2007. SELEX-A (r)evolutionary method to generate highaffinity nucleic acid ligands. Biomolecular Engineering 24:381-403. https://doi.org/10.1016/j.bioeng.2007.06.001
  15. Tombelli, S., Minunni, M and M. Mascini. 2005. Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices. Methods 37:48-56. https://doi.org/10.1016/j.ymeth.2005.05.005
  16. Toulme, J. J., Daguer, J. P and E. Dausse. 2009. Aptamers: Ligands for all reasons. In: Aptamers in Bioanalysis, ed. M. Mascini. P.p. 3-30. New Jersey, NJ: John Wiley & Sons, Inc.
  17. Vo-Dinh, T and B. Cullum. 2000. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius' Journal of Analytical Chemistry 366:540-51. https://doi.org/10.1007/s002160051549

Cited by

  1. A Minireview of the Methods for Listeria monocytogenes Detection vol.11, pp.1, 2018, https://doi.org/10.1007/s12161-017-0991-2
  2. Application of flow cytometry to wine microorganisms vol.62, 2017, https://doi.org/10.1016/j.fm.2016.10.023
  3. A Review on Lateral Flow Test Strip for Food Safety vol.40, pp.3, 2015, https://doi.org/10.5307/JBE.2015.40.3.277
  4. Development of ssDNA aptamers for the capture and detection of Salmonella typhimurium vol.6, pp.18, 2014, https://doi.org/10.1039/C4AY01035C