• Title/Summary/Keyword: Pathogen

Search Result 3,117, Processing Time 0.031 seconds

A New Rice Cultivar, "Onnuri" with A Medium-Late Maturity, High Yielding, High Grain Quality and Multiple Disease Resistance (벼 중만생 다수 고품질 복합내병성 신품종 "온누리")

  • Kim, Ki Young;Shin, Mun Sik;Ko, Jae Kwon;Kim, Bo Kyeong;Ha, Ki Yong;Nam, Jeong Kwon;Ko, Jong Cheol;Baek, Man Gee;Kim, Young Doo;Choung, Jin Il;Noh, Gwang Il;Kim, Woo Jae;Park, Hyun Su;Kwang, Huyn Jung;Shin, Seo Ho;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.324-327
    • /
    • 2008
  • 'Onnuri' is a japonica rice cultivar developed from the cross between 'Milyang 165' and HR14732-B-67-2-3 at Honam Agricultural Research Institute (HARI), NICS, RDA, in 2005. This cultivar has a short grain shape and about 121 days growth duration from transplanting to harvesting in Korean climate condition. In reaction to biotic and abiotic stresses, it shows resistance to blast, bacterial blight pathogen from $K_1$ to $K_3$ and stripe virus, but susceptible to other major diseases and insect pests. The milled kernel of 'Onnuri' is translucent with non-glutinous endosperm. It has about 18.6% of amylose content and better palatability of cooked rice compared with 'Chucheongbyeo' cultivated in Kyunggi province. The milled rice yield of 'Onnuri' is about 5.94 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. 'Onnuri' would be adaptable to southern plain of Cheonan, middle-northern plain, and southern mid-mountainous of Korea.

A New Early Maturity, Good Quality and Cold Tolerance Rice Cultivar, "Unmi" (벼 조생 양질 내냉성 "운미")

  • Nam, Jeong Kwon;Kim, Ki Young;Ko, Jong Cheol;Ha, Ki Yong;Choung, Jin Il;Kim, Bo Kyeong;Baek, Man Kee;Shin, Mun Sik;Kim, Yeong Doo;Kang, Hyeon Jung;Noh, Gwang Il;Kim, Woo Jae;Park, Hyun Su;Baek, So Hyeon;Shin, Woon Chul;Kim, Kyeong Hoon;Ko, Jae Kwon;Shin, Seo Ho;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.352-355
    • /
    • 2008
  • "Unmi" is a new japonica rice variety developed by the rice breeding team of Honam Agricultural Research Institute, NICS, RDA in 2007. This variety was developed from a across between Samcheonbyeo with lodging and cold tolerance and HR17870 derived from the cross of Iksan435 (Sobibyeo) and Sangju17 with resistance to diseases and good quality. This variety has about 110 days of growth duration from transplanting to harvesting in northern plain, northern and southern mid-mountainous areas of South Korea. It is about 68 cm in culm length and tolerant to lodging. In reaction to biotic and abiotic stresses, it shows moderate resistance to blast, and to bacterial blight pathogen races from $K_1$ to $K_3$, but susceptible to other major diseases and insect pests. The milled rice of "Unmi" is translucent and has relatively clear non-glutinous endosperm and medium short grain. It has about 17.3% amylose content and 6.3% of protein and similar palatability of cooked rice compared with Odaebyeo. The milled rice yield performance of this variety is about 5.16 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. "Unmi" would be adaptable for ordinary transplanting in the northern plain, northern and southern mid-mountainous area of South Korea.

A New Short Growth-Duration Rice Cultivar, "Keumo 3" (소득작물 전후작용 단기성 벼 품종 "금오3호")

  • Kang, Jong-Rae;Lee, Jong-Hee;Kwack, Do-Yeon;Lee, Jeom-Sik;Park, No-Bong;Ha, Woon-Gu;Park, Dong-Soo;Yeo, Un-Sang;Lim, Sang-Jong;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.292-298
    • /
    • 2009
  • A new rice cultivar "Keumo 3" was developed for adopting under double cropping system with after or before cash crop cultivation. It was selected from the cross-combination between YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102. The parent, YR17202 $F_2$ individual plant, was used for tolerance to lodging, it derived from a cross between Nonganbyeo/Shinkeumobyeo. Nonganbyeo is well known to lodging tolerance cultivar, as well as biotic stress, because it was developed by crossing with Tongil type. And the YR15727-B-B-B-102 line used as another parent with short growth duration, likewise highly resistance to rice blast disease. The pedigree derived from the cross-combination YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102 were generated to $F_7$, and a best line among them named as Milyang 201. After a series of yield trials, including local adaptability test conducted throughout the peninsular of Korea, Milyang 201 was registered with the name of "Keumo 3" in 2005. The cultivar belongs to a early maturing group and heads 4 days earlier than Keumobyeo, a standard cultivar. It has short culm, and less spikelet number per panicle than Keumobyeo. However, its milled rice yield grown under extremely late transplanting time, 10. July, over the 3 local sites for 2003-2005 years, averaged 4,48 MT/ha, which is 6% higher than the standard, Keumobyeo. "Keumo 3" has showed a durable resistance to leaf blast disease during fourteen blast nurseries screening covered from south to north in Korea for 2003-2007 years. And it was confirmed harbours pi-zt, a durable blast resistance gene. Moreover it was incompatible with 19 blast isolates under artificial inoculation, except one isolate, K1101. Additionally, "Keumo 3" exhibits resistance to $K_1$, $K_2$ and $K_3$ of bacterial blight pathogen, as well as strip virus disease resistance, and moderate resistance to dwarf virus disease. Consequently, the new rice cultivar "Keumo 3" would be well adopted where a bio stress makes a big problem annually.

A Mid-late Maturing Rice Cultivar with High-Quality and Bacterial Blight Resistance "Jinbaek" (벼 중만생 고품질 흰잎마름병 신균계(K3a) 저항성 품종 "진백")

  • Kim, Ki-Young;Shin, Mun-Sik;Kim, Bo-Kyeong;Ko, Jae-Kwon;Noh, Tae-Hwan;Ha, Ki-Yong;Ko, Jong-Cheol;Kim, Woo-Jae;Nam, Jeong-Kwon;Baek, Man-Gee;Noh, Gwang-Il;Park, Hyun-Su;Baek, So-Hyeon;Shin, Woon-Chul;Mo, Young-Jun;Choung, Jin-Il;Kim, Young-Doo;Kang, Hyun-Jung;Kim, Chung-Kon;Hwang, Hung-Goo;Kim, Je-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.314-318
    • /
    • 2009
  • A new rice cultivar "Jinbaek" carrying Xa3 and xa5 was derived from the cross between 'HR15204-38-3' with xa5 gene resistant to bacterial blight K1, K2, K3 and K3a, and F1 plant derived from the cross between Junam and Sindongjin with Xa3 gene. "Jinbaek" has approximately 125 days of growth duration from transplanting to harvesting in the west-southern coastal and Honam plain of Korea. Culm length of "Jinbaek" is 71 cm. In reaction to biotic stresses, it shows moderate resistance to blast, and wide spectrum resistance to bacterial blight pathogen, K1, K2, K3, and K3a but susceptible to rice stripe virus and blast. The milled rice of "Jinbaek" exhibits translucent, relatively clear non-glutinous endosperm and midium short grain. It has lower amylose content (18.8%) and protein content (6.2%) compared with Nampyeong. The milled rice yield of this cultivar was 5.30 MT/ha in local adaptability test of three years from 2006 to 2008. This cultivar would be adaptable to the bacterial blight-prone area in the south-western coast and Honam plain of Korea.

A Literature Study about Comparison of Eastern-Western Medicine on the Acne (여드름의 동(東)·서의학적(西醫學的) 문헌(文獻) 고찰(考察))

  • Joo, Hyun-A;Bae, Hyeon-Jin;Hwang, Chung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.2
    • /
    • pp.1-19
    • /
    • 2012
  • Objective : The purpose of this study is to investigate about comparison of Eastern-Western medicine on the acne. Methods : We searched Eastern and Western medicine books for acne. We analyzed these books and examined category, definition, etiology, classification, internal and external methods of treatment of acne. Results : The results were as follows. 1. In Eastern medicine, Acne belongs to the category of the Bunja(粉刺), Jwachang(痤瘡), Pyepungbunja(肺風粉刺). In Western medicine, the other name of Acne is acne vulgaris. 2. In Eastern medicine, the definition of Acne includes manual extraction of comedones and skin appearance. In Western medicine, Acne is a common skin disease during adolescence and a chronic inflammatory disease of pilosebaceous unit of self localization. It is characterized by noninflammatory, open or closed comedones and by inflammatory papules, pustules, and nodules and it affects the areas of skin with the densest population of sebaceous follicles, these areas include the face, neck, back, and the upper part of the chest. 3. In Eastern medicine, the cause and mechanism of Acne arose from the state of internal dampness-heat and spleen-stomach internal qi deficiency due to dietary irregularities and then invaded external pathogen such as wind-dampness-heat-cold-fire in lung meridian lead to qi and blood heat depression stagnation. So it appears in skin. In Western medicine, the etiology and pathogenesis of Acne is clearly not identified, but there are most significant pathogenic factors of blood heat depression stagnation. So it appears in skin. In Western medicine, the etiology and pathogenesis of Acne is clearly not identified, but there are most significant pathogenic factors of Acne; Androgen-stimulated production of sebum, hyperkeratinization and obstruction of sebaceous follicles, proliferation of Propionibacterium acnes and inflammation, abnormaility of skin barrier function, genetic aspects, environmental factors etc. 4. In Eastern medicine, differentiation of syndromes classifies clinical aspects, and cause and mechanism of disease; the former is papular, pustular, cystic, nodular, atrophic, comprehensive type; the latter is lung blood heat, intestine-stomach dampness-heat, phlegm-stasis depression, thoroughfare-conception disharmony, heat toxin type. In Western medicine, it divides into an etiology and invasion period, and clinical aspects; Acne neonatorum, Acne infantum, Acne in puberty and adulthood, Acne venenata; Acne vulgaris, Acne conglobata, Acne fulminans, Acne keloidalis. 5. In Eastern medicine, Internal methods of treatment of Acne are divided into five treatments; general treatments, the treatments of single-medicine and experiential description, the treatments depending on the cause and mechanism of disease, and clinical differentiation of syndromes, dietary treatments. In Western medicine, it is a basic principles that regulation on production of sebum, correction on hyperkeratinization of sebaceous follicles, decrease of Propionibacterium acnes colony and control of inflammation reaction. Internal methods of treatment of Acne are antibiotics, retinoids, hormone preparations etc. 6. In Eastern medicine, external methods of treatment of Acne are wet compress method, paste preparation method, powder preparation method, pill preparation method, acupuncture and moxibustion therapy, ear acupuncture therapy, prevention and notice, and so on. In Western medicine, external method of treatments of Acne are divided into topical therapy and other surgical therapies. Topical therapy is used such as antibiotics, sebum regulators, topical vitamin A medicines etc and other surgical therapies are used such as surgical treatments, intralesional injection of corticosteroids, skin dermabrasion, phototherapy, photodynamic therapy, and so on. Conclusions : Until now, there is no perfect, effective single treatment. We think that Eastern medicine approach and treatment can be helpful to overcome the limitations of acne cure.

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer (가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.824-829
    • /
    • 2011
  • In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.

Evaluation of Bioassay Methods to Assess Bacterial Soft Rot Resistance in Radish Cultivars (무 품종의 세균성 무름병 저항성 생물검정법 평가)

  • Afroz, Tania;Hur, Onsook;Ro, Nayoung;Lee, Jae-eun;Hwang, Aejin;Kim, Bichsaem;Assefa, Awraris Derbie;Rhee, Ju Hee;Sung, Jung Sook;Lee, Ho-sun;Hahn, Bum-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.609-616
    • /
    • 2021
  • Bacterial soft rot, caused by Pectobacterium carotovorum subsp. carotovorum (Pcc), is one of the destructive diseases of radish (Raphanus sativus) in Asian countries. The objective of this study was to establish an efficient bioassay method for the evaluation of bacterial soft rot resistance in commercial radish cultivars. First, an efficient bioassay method for examining resistance to bacterial soft rot in commercial radish cultivars was investigated. Six commercial radish cultivars were tested under various conditions: two temperatures (25℃ and 30℃), three inoculations methods (drenching, spraying, and root dipping), and two growth stages (two- and four-leaf stages). The results suggested that spraying with 1×106 cfu/ml of bacterial inoculums during the four-leaf stage and incubating at 30℃ could be the most efficient screening method for bacterial soft rot resistance in commercial radish cultivars. Second, we investigated the degree of resistance of 41 commercial radish cultivars to five Pcc isolates, namely KACC 10225, KACC 10343, KACC 10421, KACC 10458, and KACC 13953. KACC 10421 had the strongest susceptibility in terms of moderately resistant disease response to bacterial soft rot. Out of the 41 radish cultivars, 13 were moderately resistant to this pathogen, whereas 28 were susceptible. The moderately resistant radish cultivars in this investigation could serve as resistance donors in the breeding of soft rot resistance or could be used to determine varietal improvement for direct use by breeders, scientists, farmers, researchers, and end customers.

A New Mid-late Maturing Rice Cultivar with High-Quality and Multiple Resistance to Diseases and Insects, 'Dacheong' (벼 중만생 고품질 복합내병충성 신품종 '다청')

  • Kim, Woo-Jae;Ko, Jae-Kwon;Ko, Jong-Cheol;Nam, Jeong-Kwon;Ha, Ki-Yong;Shin, Mun-Sik;Kim, Yeong-Do;Kim, Bo-Kyeong;Kang, Hyun-Jung;Kim, Ki-Young;Baek, Man-Gee;Park, Hyun-Su;Baek, So-Hyeon;Shin, Woon-Chul;Kim, Kyeong-Hun;Choung, Jin-Il;Goo, Hwang-Hung;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.649-653
    • /
    • 2010
  • 'Dacheong', a new japonica rice variety developed from a cross between Iksan450 having a good eating-quality and multi-disease resistance, and YR21258-GH3 having insect resistance, was developed by the rice breeding team of Department of Rice and Winter Cereal Crop, NICS, RDA in 2008. This variety has about 125 days growth duration from transplanting to harvesting in west-southern coast, Honam and Youngnam plain of Korea. It has 87 cm culm length and tolerance to lodging. In reaction to biotic and abiotic stresses, it shows resistance to blast, bacterial blight pathogen races from $K_1\;to\;K_3$, stripe virus and brown plant hopper. The milled rice of 'Dacheong' exhibits translucent, relatively clear non-glutinous endosperm and medium short grain. It has slightly lower amylose content of 18.8% and lower protein content of 5.7%, and good palatability of cooked rice compared with Nampyeongbyeo. The milled rice yield performance of this variety is about 5.91 MT/ha in local adaptability test for three years. 'Dacheong' would be adaptable to west-southern coast, Honam and Youngnam plain of Korea.

A New Medium-Maturing, "Gangbaek" with Resistance to Bacterial Blight (벼 중생 흰잎마름병 저항성 신품종 "강백")

  • Kim, Ki Young;Shin, Mun Sik;Kim, Woo Jae;Ko, Jong Cheol;Baek, Man Gee;Ha, Ki Yong;Kim, Bo Kyeong;Ko, Jae Kwon;Nam, Jeong Kwon;Noh, Gwang Il;Park, Hyun Su;Noh, Tae Hwan;Noh, Jae-Hwan;Cheong, Jin Il;Kim, Young Doo;Mo, Young Jun;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.443-446
    • /
    • 2008
  • 'Gangbaek' is a japonica rice variety developed and registered by the rice breeding team of Department of Rice and Winter Cereal Crop, NICS, RDA in 2006. 'Gangbaek' was derived from a cross between 'Suweon345' with good grain quality and 'DV85' resistant to bacterial blight, $K_{3a}$. $F_1$ plants were grown in the greenhouse in winter of 1992/1993 and backcrossed with 'Suweon345' as the recurrent parent. Plants resistant to $K_{3a}$ race of bacterial blight (BB) were selected from $BC_1F_1$ to $BC_4F_1$ and used as parents in the backcrossing processes. This variety has about 120 days growth duration from transplanting to harvesting in west-southern coast and Honam plain of Korea. It is about 69 cm in culm length and tolerance to lodging. In reaction to biotic and abiotic stresses, it shows moderately resistance to blast, and resistance to bacterial blight pathogen, $K_1$, $K_2$, $K_3$ and $K_{3a}$, but susceptible to other major diseases and insect pests. The milled rice of 'Gangbaek' exhibits translucent, relatively clear non-glutinous endosperm and midium short grain. It has lower amylose content of 18.6% and protein content of 6.4% compared with 'Nampyeongbyeo'. The milled rice yield performance of this variety is about 5.28 MT/ha in local adaptability test for three years. This cultivar would be adaptable to the bacterial blight-prone area in the south-western coastal and Honam plain of Korea.

A New Mid-late Maturing, Lodging Tolerance and Good-Quality Rice Variety "Saenuri" (벼 중만생 고품질 내도복 신품종 "새누리")

  • Kim, Ki Young;Shin, Mun Sik;Ko, Jae Kwon;Ha, Ki Yong;Kim, Bo Kyeong;Nam, Jeong Kwon;Ko, Jong Cheol;Baek, Man Gee;Kim, Young Doo;Kang, Hyun Jung;Noh, Gwang Il;Kim, Woo Jae;Park, Hyun Su;Choung, Jin Il;Baek, So Hyeon;Shin, Woon Chul;Mo, Young Jun;Kim, Kyeong Hoon;Kim, Chung Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.503-506
    • /
    • 2008
  • 'Saenuri' is a new japonica rice variety developed and registered by the rice breeding team of Department of Rice and Winter Cereal Crop, NICS, RDA in 2007. This variety was derived from a cross between Gyehwa17 with lodging tolerance and high yield potential, and HR14026-B-68-6-1-5 with resistance to diseases and good eating quality. This variety has about 124 days growth duration from transplanting to harvesting in west-southern coast, Honam and Youngnam plain of Korea. It is about 78 cm in culm length and tolerance to lodging. In reaction to biotic and abiotic stresses, it shows moderately resistance to blast, and resistance to bacterial blight pathogen races from K1 to $K_3$ and stripe virus, but susceptible to other major diseases and insect pests. The milled rice of "Saenuri" exhibits translucent, relatively clear non-glutinous endosperm and midium short grain. It has similar amylose content of 19.0% and lower protein content of 6.1%, and good palatability of cooked rice compared with Nampyeongbyeo. The milled rice yield performance of this variety is about 5.71MT/ha in local adaptability test for three years. "Saenuri" would be adaptable to west-southern coast, Honam and Youngnam plain of Korea.