• 제목/요약/키워드: Path set

검색결과 751건 처리시간 0.028초

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

선형 배열 롤 셋을 이용한 오목형상 강판 성형경로 설계 (Design of Forming Path for Concave Steel Plate Using the Line Array Roll Set)

  • 노형주;김광희;심도식;양동열;정성욱;한명수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.361-364
    • /
    • 2008
  • Incremental forming path to manufacture a thick concave steel plate using the line array roll set is designed. To find the optimum forming path, the forming processes are simulated by the finite element method. A general-purpose commercial software, MSC.MARC is used. The rolls are modeled as rigid surfaces and the thick plate is modeled as 8-node hexahedral elastic-plastic solid elements to predict accurate springback. It is found that the process can be successfully applied to the fabrication of the dual curvature ship hull plate

  • PDF

해양 로봇의 회전 반경을 고려한 경로 계획 알고리즘 (Any-angle Path Planning Algorithm considering Angular Constraint for Marine Robot)

  • 김한근;명현;최현택
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.365-370
    • /
    • 2012
  • Most path planning algorithms for a marine robot in the ocean environment have been developed without considering the robot's heading angle. As a result, the robot has a difficulty in following the path correctly. In this paper, we propose a limit-cycle circle set that applies to the $Theta^*$ algorithm. The minimum turning radius of a marine robot is calculated using a limit-cycle circle set, and circles of this radius is used to generate a configuration space of an occupancy grid map. After applying $Theta^*$ to this configuration space, the limit-cycle circle set is also applied to the start and end nodes to find the appropriate path with specified heading angles. The benefit of this algorithm is its fast computation time compared to other 3-D ($x,y,{\theta}$) path planning algorithms, along with the fact that it can be applied to the 3-D kinematic state of the robot. We simulate the proposed algorithm and compare it with 3-D $A^*$ and 3-D $A^*$ with post smoothing algorithms.

퍼지 포텐셜 필드를 이용한 이동로봇의 동적 경로 계획 (Dynamic Path Planning for Mobile Robots Using Fuzzy Potential Field Method)

  • 우경식;박종훈;허욱열
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.291-297
    • /
    • 2012
  • In this paper, potential field algorithm was used for path planning in dynamic environment. This algorithm is used to plan a robot path because of its elegant mathematical analysis and simplicity. However, there are some problems. The problems are problem of collision risk, problem of avoidance path, problem of time consumption. In order to solve these problems, we fused potential field with fuzzy system. The input of the fuzzy system is set using relative velocity and location of robot and obstacle. The output of the fuzzy system is set using the weighting factor of repulsive potential function. The potential field algorithm is improved by using fuzzy potential field algorithm and, path planning in various environment has been done.

Problem Solving Path Algorithm in Distance Education Environment

  • Min, Youn-A
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.55-61
    • /
    • 2021
  • 원격교육에서 학습자의 효율적 학습을 지원하기 위하여 학습추적 알고리즘을 통한 문제해결 경로 제시가 필요하다. 본 논문에서는 기존 학습추적 알고리즘을 보완하여 다양한 과목에서 다양한 난이도의 문제 해결경로를 제안하였다. 학습자의 문제해결을 위한 경로를 통하여 얻은 데이터 셋을 통하여 프림 최소비용신장트리를 통한 경로를 확보하고 해당 Path 데이터셋을 통하여 재귀신경망을 통한 최적의 문제해결 경로를 제시하도록 하였다. 본 논문에서 제안한 내용에 대한 성능평가 결과 실험대상자 52% 이상이 문제해결 과정에서 제안한 문제해결 경로를 포함하였으며 문제해결 시간 역시 45% 이상 향상된 것을 확인하였다.

입자 군집 최적화와 개선된 Dijkstra 알고리즘을 이용한 경로 계획 기법 (Path Planning Method Using the the Particle Swarm Optimization and the Improved Dijkstra Algorithm)

  • 강환일;이병희;장우석
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.212-215
    • /
    • 2008
  • 본 논문에서 개선된 Dijkstra 알고리즘과 입자 군집 최적화를 이용한 최적 경로 계획 알고리즘을 제안한다. 최적의 경로를 구하기 위해 우선 이동 로봇 공간에서 MAKLINK를 작성하고 MAKLINK와 관련한 그래프를 얻는다. 여기서 MAKLINK는 장애물의 꼭지점을 연결하면서 볼록집합이 만들어지도록 하는 모서리의 집합을 의미한다. 얻은 그래프에서 출발점과 도착점을 포함하여 Dijkstra 알고리즘을 이용하여 최소 비용 최적 경로를 얻고 이 최적의 경로에서 개선된 Dijkstra경로를 얻는다. 마지막으로 개선된 Dijkstra경로에서 입자 군집 최적화를 적용하여 최적의 경로를 얻는다. 제안된 방법이 논문[1]에 나온 결과보다 더 좋은 성능을 갖는다는 것을 실험을 통해 입증한다.

전자식 주차 브레이크 작동소음 개발 목표 설정을 위한 전달경로분석법의 적합성 연구 (Study of TPA for cascading NVH target of electric parking brake)

  • 정현범;이재용;한민규;전남일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.94-98
    • /
    • 2013
  • Transfer Path Analysis (TPA) is commonly used, by car makers and parts suppliers, analysis process to root the cause of NVH problems. In general, TPA is an analyzing technique to find the contributing factors of noise/vibration problems, and their transfer path in vehicle. However, not only TPA is used to analyze the source of NVH problems but also is used to predict NVH performance prior to the proto vehicle, or to set the development target for next new vehicle. Automotive parts manufacturing companies have to set NVH performance target when developing new systems just as car makers have NVH target set for new vehicle. Nevertheless, most of components are currently being developed based on subjective evaluation without an objective target. To judge the suitability of using TPA to set NVH target of electric parking brake, this research analyzed the transfer path by setting them in two points of view; Chassis Module and Electric Parking Brake, and comparing the measured value and calculated value. From this result, NVH target of electric parking brake will be approached in level of vehicle, system and component.

  • PDF

Application of Quadratic Algebraic Curve for 2D Collision-Free Path Planning and Path Space Construction

  • Namgung, Ihn
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.107-117
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on an algebraic curve as well as the concept of path space is developed. Robot path planning has so far been concerned with generating a single collision-free path connecting two specified points in a given robot workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is introduced. A PS is a set of points that represent a connection between two points in Euclidean metric space. A geometry mapping (GM) for the systematic construction of path space is also developed. A GM based on the 2$^{nd}$ order base curve, specifically Bezier curve of order two is investigated for the construction of PS and for collision-free path planning. The Bezier curve of order two consists of three vertices that are the start, S, the goal, G, and the middle vertex. The middle vertex is used to control the shape of the curve, and the origin of the local coordinate (p, $\theta$) is set at the centre of S and G. The extreme locus of the base curve should cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the path is defined as quadratic workspace (QWS). The interference of the path with obstacles creates images in the PS. The clear areas of the PS that are not mapped by obstacle images identify collision-free paths. Hence, the PS approach converts path planning in Euclidean space into a point selection problem in path space. This also makes it possible to impose additional constraints such as determining the shortest path or the safest path in the search of the collision-free path. The QWS GM algorithm is implemented on various computer systems. Simulations are carried out to measure performance of the algorithm and show the execution time in the range of 0.0008 ~ 0.0014 sec.

유향 그래프의 최대 경로 길이를 제한하는 최소 노드 집합을 구하는 알고리즘 (Determining Minimal Set of Vertices Limiting The Maximum Path Length in General Directed Graphs)

  • Lee Dong Ho
    • 전자공학회논문지B
    • /
    • 제32B권1호
    • /
    • pp.11-20
    • /
    • 1995
  • A new graph problem is formulated to limit the maximum path length of a general directed graph when a minimal set of vertices together with their incident edges are removed from the graph. An optimal algorithm and a heuristic algorithm are proposed and the proposed heuristic algorithm is shown to be effective through experiments using a collection of graphs obtained from large sequential circuits. The heuristic algorithm is based on a feedback vertex set algorithm based on graph reduction.

  • PDF

Construction of minimum time joint trajectory for an industrial manipulator using FTM

  • Cho, H.C.;Oh, Y.S.;Jeon, H.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.882-885
    • /
    • 1987
  • The path of an industrial manipulator in a crowded workspace generally consists of 8 set of Cartesian straight line path connecting a set of two adjacent points. To achieve the Cartesian straight line path is, however, a nontrivial task and an alternative approach is to place enough intermediate points along a desired path and linearly interpolate between these points in the joint space. A method is developed that determines the subtravelling- and the transition-time such that the total travelling time for this path is minimized subject to the maximum joint velocities and accelerations constraint. The method is based on the application of nonlinear programming technique, i.e., FTM (Flexible Tolerance Method). These results are simulated on a digital computer using a six-joint revolute manipulator to show their applications.

  • PDF