• Title/Summary/Keyword: Path searching algorithm

Search Result 129, Processing Time 0.025 seconds

Multi-Stage Path Planning Based on Shape Reasoning and Geometric Search (형상 추론과 기하학적 검색 기반의 다단계 경로 계획)

  • Hwang, Yong-K.;Cho, Kyoung-R.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.493-498
    • /
    • 2004
  • A novel approach for path planning of a polygonal robot is presented. Traditional path planners perform extensive geometric searching to find the optimal path or to prove that there is no solution. The computation required to prove that there is no solution is equivalent to exhaustive search of the motion space, which is typically very expensive. Humans seems to use a set of several different path planning strategies to analyse the situation of the obstacles in the environment, and quickly recognize whether the path-planning problem is easy to solve, hard to solve or has no solution. This human path-planning strategies have motivated the development of the presented algorithm that combines qualitative shape reasoning and exhaustive geometric searching to speed up the path planning process. It has three planning stages consisting of identification of no-solution cases based on an enclosure test, a qualitative reasoning stage, and finally a complete search algorithm in case the previous two stages cannot determine of the existence of a solution path.

Time-Delay Estimation in the Multi-Path Channel based on Maximum Likelihood Criterion

  • Xie, Shengdong;Hu, Aiqun;Huang, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1063-1075
    • /
    • 2012
  • To locate an object accurately in the wireless sensor networks, the distance measure based on time-delay plays an important role. In this paper, we propose a maximum likelihood (ML) time-delay estimation algorithm in multi-path wireless propagation channel. We get the joint probability density function after sampling the frequency domain response of the multi-path channel, which could be obtained by the vector network analyzer. Based on the ML criterion, the time-delay values of different paths are estimated. Considering the ML function is non-linear with respect to the multi-path time-delays, we first obtain the coarse values of different paths using the subspace fitting algorithm, then take them as an initial point, and finally get the ML time-delay estimation values with the pattern searching optimization method. The simulation results show that although the ML estimation variance could not reach the Cramer-Rao lower bounds (CRLB), its performance is superior to that of subspace fitting algorithm, and could be seen as a fine algorithm.

Path Planning based on Geographical Features Information that considers Moving Possibility of Outdoor Autonomous Mobile Robot

  • Ibrahim, Zunaidi;Kato, Norihiko;Nomura, Yoshihiko;Matsui, Hirokazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.256-261
    • /
    • 2005
  • In this research, we propose a path-planning algorithm for an autonomous mobile robot using geographical information, under the condition that the robot moves in unknown environment. All image inputted by camera at every sampling time are analyzed and geographical elements are recognized, and the geographical information is embedded in environmental map. The geographical information was transformed into 1-dimensional evaluation value that expressed the difficulty of movement for the robot. The robot goes toward the goal searching for path that minimizes the evaluation value at every sampling time. Then, the path is updated by integrating the exploited information and the prediction on unexploited environment. We used a sensor fusion method for improving the mobile robot dead reckoning accuracy. The experiment results that confirm the effectiveness of the proposed algorithm on the robot's reaching the goal successfully using geographical information are presented.

  • PDF

Searching a Navigation Path to Avoid Danger Area for Safe Driving (안전운전을 위해 위험지역을 회피하는 내비게이션 경로탐색)

  • Lee, Yong-Hu;Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.171-179
    • /
    • 2013
  • The primary function of navigation system is to provide route search and road guidance for safe driving for drivers. However, the existing route search system provides a simple service that looks up the shortest route using a safe driving DB without considering different road characteristics for the safety of the drivers. In order to maintain the safe driving, rather than searching the shortest path, a navigation system, in which the danger areas and/or the dangerous time zones have been considered, is required. Therefore, in this paper we propose a strategy of searching a navigation path to avoid danger areas for safe driving by using the A* algorithm. In the strategy, when evaluating the path-specific fitness of the navigation nodes, different heuristic weights were assigned to different types of risk areas. In particular, we considered three kinds of danger areas, such as accident-prone sections where accidents occur frequently, school zones, and intersection regions, as well as the time slots when the probability of danger is high. From computer simulation, the results demonstrate that the proposed scheme can provide the way to avoid danger areas on the route searching and confirm the possibility of providing the actual service.

A Path Finding Algorithm based on an Abstract Graph Created by Homogeneous Node Elimination Technique (동일 특성 노드 제거를 통한 추상 그래프 기반의 경로 탐색 알고리즘)

  • Kim, Ji-Soo;Lee, Ji-Wan;Cho, Dea-Soo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.39-46
    • /
    • 2009
  • Generally, Path-finding algorithms which use heuristic function may occur a problem of the increase of exploring cost in case of that there is no way determined by heuristic function or there are 2 way more which have almost same cost. In this paper, we propose an abstract graph for path-finding with dynamic information. The abstract graph is a simple graph as real road network is abstracted. The abstract graph is created by fixed-size cells and real road network. Path-finding with the abstract graph is composed of two step searching, path-finding on the abstract graph and on the real road network. We performed path-finding algorithm with the abstract graph against A* algorithm based on fixed-size cells on road network that consists of 106,254 edges. In result of evaluation of performance, cost of exploring in path-finding with the abstract graph is about 3~30% less than A* algorithm based on fixed-size cells. Quality of path in path-finding with the abstract graph is, However, about 1.5~6.6% more than A* algorithm based on fixed-size cells because edges eliminated are not candidates for path-finding.

  • PDF

A Study on the Construction of a Drone Safety Flight Map and The Flight Path Search Algorithm (드론 안전비행맵 구축 및 비행경로 탐색 알고리즘 연구)

  • Hong, Ki Ho;Won, Jin Hee;Park, Sang Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1538-1551
    • /
    • 2021
  • The current drone flight plan creation creates a flight path point of two-dimensional coordinates on the map and sets an arbitrary altitude value considering the altitude of the terrain and the possible flight altitude. If the created flight path is a simple terrain such as a mountain or field, or if the user is familiar with the terrain, setting the flight altitude will not be difficult. However, for drone flight in a city where buildings are dense, a safer and more precise flight path generation method is needed. In this study, using high-precision spatial information, we construct a drone safety flight map with a 3D grid map structure and propose a flight path search algorithm based on it. The safety of the flight path is checked through the virtual drone flight simulation extracted by searching for the flight path based on the 3D grid map created by setting weights on the properties of obstacles and terrain such as buildings.

An Efficient Search Algorithm for Shorten Routing Path in ZigBee Networks (ZigBee 네트워크에서 효율적인 단축 경로 검색 알고리즘)

  • Kim, Doo-Hyun;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1535-1541
    • /
    • 2009
  • In this paper, we suggest an efficient path searching algorithm that reduces the hop count when each node sends a data in ZigBee networks. As the hop count reduces, the network traffic is also reduces and leads to less energy consumption. This enables the sensor network live longer with limited node power. The proposed path searching algorithm consists of two sub-algorithms. One for upstream process and the other for downstream process. When a node selects its proper routing path, the node not only uses the information of the parent and child node, but it also uses the neighbor nodes for each node. In the simulation, we changed various network environment factors such as network parameters, number of nodes, and number of neighbor nodes and observed their performances. We compare the performance to the previous ZigBee Tree routing algorithm with separate two algorithms, the upstream and the downstream, and then compare the performance when all two algorithms are applied.

Development of a Multi-criteria Pedestrian Pathfinding Algorithm by Perceptron Learning

  • Yu, Kyeonah;Lee, Chojung;Cho, Inyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.49-54
    • /
    • 2017
  • Pathfinding for pedestrians provided by various navigation programs is based on a shortest path search algorithm. There is no big difference in their guide results, which makes the path quality more important. Multiple criteria should be included in the search cost to calculate the path quality, which is called a multi-criteria pathfinding. In this paper we propose a user adaptive pathfinding algorithm in which the cost function for a multi-criteria pathfinding is defined as a weighted sum of multiple criteria and the weights are learned automatically by Perceptron learning. Weight learning is implemented in two ways: short-term weight learning that reflects weight changes in real time as the user moves and long-term weight learning that updates the weights by the average value of the entire path after completing the movement. We use the weight update method with momentum for long-term weight learning, so that learning speed is improved and the learned weight can be stabilized. The proposed method is implemented as an app and is applied to various movement situations. The results show that customized pathfinding based on user preference can be obtained.

A Shortest Path Algorithm Considering Directional Delays at Signalized Intersection (신호교차로에서 방향별 지체를 고려한 최적경로탐색 연구)

  • Min, Keun-Hong;Jo, Mi-Jeong;Kho, Seung-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2010
  • In road network, especially in urban area, inefficiency of travel time is caused by signal control and turn maneuver at intersection and this inefficiency has substantial effects on travel time. When searching for the shortest path, this inefficiency which is caused by turn maneuver must be considered. Therefore, travel time, vehicle volume and delay for each link were calculated by using simulation package, PARAMICS V5.2 for adaptation of turn penalty at 16 intersections of Gangnam-gu. Turn penalty was calculated respectively for each intersection. Within the same intersection, turn penalty differs by each approaching road and turn direction so the delay was calculated for each approaching road and turn direction. Shortest path dealing with 16 intersections searched by Dijkstra algorithm using travel time as cost, considering random turn penalty, and algorithm considering calculated turn penalty was compared and analyzed. The result shows that by considering turn penalty searching the shortest path can decrease the travel time can be decreased. Also, searching the shortest path which considers turn penalty can represent reality appropriately and the shortest path considering turn penalty can be utilized as an alternative.

Searching optimal path using genetic algorithm (유전 알고리즘을 이용한 최적 경로 탐색)

  • Kim, Kyungnam;cho, Minseok;Lee, Hyunkyung
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.479-483
    • /
    • 2015
  • In case of the big city, choosing the adequate root of which we can reach the destination can affect the driver's condition and driving time. so it is quite important to find the optimal routes for arriving the destination as considering the factors, such as driving conditions or travel time and so on. In this paper, we develop route choice model with considering driving conditions and travel time, and it can search the optimal path which make drivers reduce their fatigues using genetic algorithm.

  • PDF