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Abstract: In this research, we propose a path-planning algorithm for an autonomous mobile robot using geographical information, 
under the condition that the robot moves in unknown environment. All image inputted by camera at every sampling time are analyzed 
and geographical elements are recognized, and the geographical information is embedded in environmental map. The geographical 
information was transformed into 1-dimensional evaluation value that expressed the difficulty of movement for the robot. The robot 
goes toward the goal searching for path that minimizes the evaluation value at every sampling time. Then, the path is updated by 
integrating the exploited information and the prediction on unexploited environment. We used a sensor fusion method for improving 
the mobile robot dead reckoning accuracy. The experiment results that confirm the effectiveness of the proposed algorithm on the 
robot’s reaching the goal successfully using geographical information are presented. 
 
Key words:  Path Planning, Autonomous Mobile, Geographical Information and Dead Reckoning 
 

1. INTRODUCTION     
In recent years, the working area of an autonomous mobile 

robot has not been limited to indoors only, but it has extended 
to the outdoors. Navigation systems are necessary when robots 
move autonomously and it has been studied for many years. 
Studies had begun from a basic research of COM, Class, Bug, 
etc., and in recent years some promising techniques have been 
proposed, for example, an autonomous action planning for the 
mobile robot that considered errors of an internal and external 
sensors together with the uncertainty of a map [1-3], an 
autonomous guidance that avoided wall-collision, by measuring 
distances to wall based on the detected edges [4], and a 
human-evading action planning system using GA [5].  

Although many of these researches targeted obstacle 
avoidance, they didn't consider geographical feature elements 
that greatly influenced robot movement. If geographical 
environment consists of single flat element such as floor and 
asphalt, and if a robot were large-sized, it would not become 
crucial factor to be concerned whatever geographical feature 
elements are. However, if geographical environments are 
intensively changed, and if a robot is small-sized, we should 
take the geographical feature element into consideration. In this 
paper, we used encoder, accelerometer and gyro sensor data 
fusion with error model method for robot positioning. In this 
method, we use error model method where each sensor will 
measure the accumulated error to it’s own position’s [6-8]. The 
advantage of our propose method by considering feature 
elements, is that we also can reduce the accumulated errors of 
position and orientation. The advantages are, for example, the 
decrease of damaging robot and the energy loss saving.  

Thus, in this research, we propose a path-planning algorithm 
using geographical feature information for the autonomous 
mobile robot to move in unknown environments. 

 
2. IMAGE FEATURES TO RECOGNIZE 

OUTDOOR GEOGRAPHICAL ELEMENTS 
 
2·1 Color theory  

We employ the six–sided pyramidal color model to 
recognize outdoor geographical elements, which based on the 

typical color expressing system presented by Munsell: Hue (H), 
Intensity (I) and Saturation (S) are converted from R, G, B 
color value obtained by color video camera. 

 
2·2 Image features of outdoor geographic elements  
2·2·1 Categorization of geographical feature elements  

Although many geographical elements exist in the 
outer field, in this paper, we are only consider into four 
elements which, "asphalt or concrete (AC)", "grass 
(GR)", "gravel (GV)", and "sand or soil (SS)" based on 
the difficulty that robots suffer from when moving.  
 
2·2·2 Modeling geographical elements  

To recognize each element in advance, we need to model the 
elements. First of all, the image features are extracted from 
sample images. And they are the averages and the standard 
deviations of H, I and S for each sample image: Hμ, Iμ and S
μ, and Hσ, Iσ and Sσ.  

Next, the averages and standard deviations of the Hμ, Iμ 
and Sμ, and Hσ, Iσ and Sσ  are calculated among all the 
sample images being classified into the identical category, and 
are expressed as μIμ, μIσ, μHμ, μHσ, μSμ and μSσ,
σ Iμ , σ Iσ , σ Hμ , σ Hσ , σ Sμ . Fitting the normal 
distribution function of Eq. (1) to these averages and standard 
deviations, we define the fitted normal distribution function as 
the model equation for each element.  
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2·2·3 Recognition of geographical elements  

A method to recognize the geographical elements is 
described in this section. Image segmentation processing has 
great implication on image recognition [9]. As for the image 
segmentation, there has existed a method using histogram of 
whole image, but it is difficult to decide a threshold value 
automatically in the outdoor field where environment changes 
by instantly.  
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Fig.1 Standard derivation of S 

Fig.2 Standard derivation of I 

Fig.3 Standard derivation of H 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, in this research, we are utilizing Bayes 

discrimination for tessellated sub images. The finer image 
tessellation is, the smoother the outlines of objects become. 
However, the information needed for recognition, especially 
the values of variance will be lost. Considering these, we 
determine the number of tessellation by experiment. The 
recognition process is explained in the following.  

Firstly, the input images are tessellated into square grid sub 
images, and image features such as Hμ, Iμ, Sμ, Hσ, Iσ, and Sσ 
are extracted for each sub image. Next, each sub image is 
classified into an element by Bayes’ discriminant law. Let’s 
take an example that the feature Hμis extracted in some sub 
image. Then, in the case of "grass", we can obtain a conditional 
probability by applying the extracted image feature Hμ to the 
corresponding model functions pHμ(x|GR), i.e., pHμ(Hμ|GR). 
Thus, for all of the elements, the conditional probabilities are 
obtained as pHμ(Hμ|AC), pHμ(Hμ|GR), pHμ(Hμ| GV), and pHμ
(Hμ| SS). 

Then, we obtain a posteriori probability for each element by 
applying the Bayes’ discriminant law to the conditional 
probabilities for all the elements: p(AC| Hμ), p(GR| Hμ), 
p(GV| Hμ), and p(SS| Hμ). Here, in a case that the six pieces of 
probabilities to an element obtained from the six kinds of 
information are consistent to each other, we do not feel any 
difficulty to integrate six pieces of information. However, in the 
other case that the six pieces of probabilities to an element are 
contradictory to each other, we encounter much difficulty to 
integrate them. For example, as shown in Fig.1 to Fig.3, 
distribution functions of some elements might be similar to one 
another. Therefore, we employ Dempster-Shafer theory to 
integrate six kinds of information [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3. GENERATION OF ENVIRONMENTAL MAP 
    
3·1 Evaluation values of geographical elements   

When a robot generates an environmental map with 
geographical information, it is necessary to change into the 
appropriate information for the robot movement, rather than 
simply using a recognition result. 

So, we use a technique of embedding the geographical 
feature information into an environmental map where the 
information is changed into an evaluation value representing 
the difficulty of moving for the robot. We call this value the 
geographical evaluation value. 

Now, let’s consider that "asphalt or concrete (AC)", "sand or 
soil (SS)", "gravel (GV)", and "grass (GR)" are regarded as 
elements on outdoors. The geographical evaluation value J to 
be embedded in the environmental map is given by 

 
GRGRGVGVSSSSACAC PWPWPWPWJ +++=  (2) 

 
where, 
 WLAND : The weight coefficient that expresses the 

difficulty when the robot moving on a geographical feature 
element "LAND"  

 
where  
 
"LAND"∈{"AC" , "SS" , "GV" , "GR" } 

and  
 GRGVSSAC WWWW <<<  
 
are assumed. 
 
 PLAND : The probability value of a point being 
geographical feature element "LAND", when camera taking 
image.  (0.0 ≦ PLAND ≦ 1.0) 
 
3·2 Transformation from image coordinates to 
environmental map coordinates   

A camera captures outdoor scene with WINDOWS DIB 
still-images of 240x340[pixel]. Sub images of the captured DIB 
images are classified into an outdoor element and, furthermore, 
the geographical evaluation values are allocated according to 
the elements. Next, the captured DIB still-images are 
transformed from image coordinates( Σ I) to world 
coordinates(ΣW), via camera coordinates(ΣC), and robot 
coordinates(ΣR), and the allocated geographical evaluation 
values are embedded in an environmental map.  

The camera is set at 210[mm] in height, and with an angle of 
depression of 28[degree]. 
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Fig.4 The flow of coordinates transformation 

and 4 trapezoid area points onΣR [mm]  
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Fig. 5. An example of the target path at “Approach to 
GOAL” 
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GOAL 

Rmin 

Fig. 6. Examples of failing in reaching GOAL 
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Fig. 7. Border value between “Approach to GOAL” and 
“Neighborhood of GOAL” 
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By performing coordinate transformation, the four-corner 

points on a DIB image is transformed into trapezoid area on Σ
R as shown in Fig.4. And, moreover, this trapezoid area is 
transformed toΣW. 

We divide the transformed picture into 16x16 pieces, and 
update environmental maps by embedding geographical 
evaluation values in environmental maps. 
 

4. PATH PLANNING 
    

The experimental conditions are as follows. 
・The position and orientation of robot can be determined 

accurately enough. 
・The position of GOAL is given, but the environment is 

unknown in advance. 
・There is no obstacles that robot can't pass through such as 

wall and precipice. 
・A robot can pass on the above-described geographical 

feature elements which exist in environment. But, expressing 
difficulty of robot’s moving, the weight coefficients for the 
geographical features differ. 
 
4·1 Region definition  

When using a CCD camera as a vision sensor, we find there 
is two kinds of areas exist. One is the area for which 
geographical elements can be recognized, and the other one is 
can not, because it is in the outside of visible area. Now, we 
define the former as the visible region (VR), and the latter as 
the unknown region (UR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4·2 Generation of target path  

As shown in Fig.5, the target path is that the robot performs 
turning or running straight in VR at first. 

And then in UR, the robot runs the shortest length path with 
minimum radius turning, and running straight aiming at GOAL 
directly. 

However, when the distance from present representation 
point (central point of front wheel shaft) to GOAL is not far 
enough, the above mentioned target path is not necessarily 
successfully generated. Fig.6 shows two such cases. They are 
the case that GOAL exists in the area of the minimum turning 
radius in UR, and the other case that GOAL exists in VR. 
Therefore, we make a little change to generation of a target 
path in this case. 

 
When Lbor shown in Fig.7 satisfies 

 Lbor ≧ 2Rmin   (3) 

We define this case as "Approach to GOAL". Contrary to this, 
when Lbor satisfies 
 
 Lbor ＜ 2Rmin   (4) 

We define this case as "Neighbor of GOAL". 
where  
 

 Rmin : Minimum turning radius. 
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Fig. 8. Target path at visible region GOAL 

Fig. 9. One of the paths at “Neighbor of GOAL” 
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4·3 Path planning at "Approach to GOAL"  
The robot goes toward GOAL, searching the optimal path 

out of target pathes generated. Now, we consider a path 
evaluation value as a standard value for searching the optimal 
path. The path evaluation value expresses the grade of the 
difficulty of movement for a robot. 
 
4·3·1 Calculation of path evaluation value in VR  

The target path is generated by changing target angle α 
and control angle θ, as shown in Fig.8.  
 α : Target angle, which is defined as an angle between 

the YR axis and the line segment that connects the robot 
representation point and the target point being set in VR (Pend). 
 θ : Control angle, which is the steering angle of the 

robot. 
The robot performs turning movement (α  ≠  θ ) or 

straight movement (α = θ) in VR by changing αand θ. 
When the robot moves in VR, the robot searches for the 

optimal path based on the geographical evaluation value. 
When the robot moves, the geographical features should be 

examined only at the places that the robot's wheel steps on. 
Therefore, the robot's shape should not be represented in a 

generally used shapes such as a circular and a rectangle, but in 
the two points, that is, the left and right wheel points.  

It is considered that just the geographical feature, which the 
two points step on, should be taken into consideration. 

Once a set of α and θis given, the robot generates a 
target path in VR. Moving along the generated target path, the 
robot calculates the movement evaluation value at each of 
sampling step. 

Movement evaluation value at a certain sampling step k, 
J(k) is defined by  
 ( ) ( ) ( )

2
kJkJKkJ RL +×=   (5) 

 
where 

 JL(k) : Geographical evaluation value, on which 
robot's left wheel steps, at a sampling step k. 
 JR(k) : Geographical evaluation value, on which 
robot's right wheel steps, at a sampling step k. 
 K : The weight coefficient used when right and left 
wheel step on different geographical feature elements.  

As a result, path evaluation value  in VR, Jv, by a set of α 
and θ is given by 
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where 

 Ldev : Length of the path that the robot moves along 
in one sampling step as shown in Fig.8. 
 
4·3·2 Path evaluation value in UR  

In UR, the robot performs the shortest distance movement, 
the path of which is created by concatenating the minimum 
rotation radius movement with the straight movement to 
GOAL. 

When the movement evaluation value at Pend is given as Jn, 
the path evaluation value in UR, Ju, is given by  

 unk
Gn

u L
JJ

J ×
+

=
2

   (7) 

 JG : Geographical evaluation value at GOAL 
(given)  

 Lunk : Estimated shortest length of the path, along 
which robot will run in UR. 

 
4·3·3 Total path evaluation value   

Finally, the total path evaluation value Jt is given by, 
 

 uvt JJJ +=    (8) 
 

The robot repeats choosing the optimal course at every 
sampling time, for which a course evaluation value is the 
lowest, and moves toward GOAL. 
    
4·3·4 Path planning at "Neighbor of GOAL"  

At "Neighbor of GOAL", the target angle α  is fixed 
toward GOAL direction from the robot position, and the control 
angle θ is changed one by one, and, thus, the target path is 
generated. Turning (α ≠ θ) or running straight (α = θ), 
the target path directly reaches at the goal as show in Fig.9. 

Path evaluation value at Neighbor of GOAL is calculated by 
the same method that is used in Approach to GOAL. 
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Fig.10 Experimental result in case of far-ranging 
grass lies in depth direction 

Fig.11 Experimental result in case of 
narrowly-ranging grass lies in depth direction 

 

Fig.12 Experimental result in case of asphalt road runs 
up as hook form 

Grass Area 

Grass Area 

Grass Area 

Grass Area

GOAL 

GOAL 

GOALGOALGOALGOAL

Scale

1m

Scale

1m

Scale

1m

5. MOBILE ROBOT DEAD RECKONING 
 
Dead reckoning should have to minimize its unbounded 

growth in position and orientation errors. This can be 
accomplished by meticulously modeling sensor errors and by 
efficient filter design. 

 
5.1 The error model for encoder   

The mobile robot position and orientation are calculated 
from the output of incremental encoder system It is well known 
that system is subject to systematic errors caused by factors 
such as unequal wheel-diameters, imprecisely measured wheel 
diameters, or an imprecisely measured wheel separation 
distance. Subject to these errors the robot’s position and 
orientation angle are computed as error model. 
 
5.2 The error model for gyro and accelerometer     

Inertial navigation uses gyro sensor and acceleration sensor 
to measure rate of rotation and acceleration respectively. 
However, inertial sensor data drift with time because of the 
need to integrate rate data to yield position. Considering the 
bias drift of those sensors, the robot’s position and orientation 
are computed as error model.  
 
5.3 Fusion of error model data   

We use the Kalman filter tool for fusion all error measure by 
provided sensor. The fusion method will improve the 
dead-reckoning accuracy of a mobile robot based on encoder 
system, gyro and accelerometer. We used this mobile robot 
positioning method and conduct the path planning experiment 
using geographical information. 
 

6. EXPERIMENT 
 
The experimental conditions are as follows. (Refer to Path 

Planning in chapter 4 for more detail) 
・Width of robot wheel has 282[mm] by 220[mm] length. 
・Ldev is 5.0[mm] length. 
・The initial stage of environment is unknown and the GOAL 

is given. 
Experimental results are shown in Fig.10 to Fig.12. In these 

figures, the brighter the gray level is, the lower of the 
geographical evaluation value is. Contrary to this, the darker 
the gray level is, the higher of the geographical evaluation 
value is. The geographical features recognition’s also depend 
on the experiment time and weather condition, which the 
minute difference of gray level contrast will affect to 
geographical evaluation value. But this is not effect to the 
essence result. Our experiments have conducted in clear 
weather condition. If the geographical evaluation value is same, 
we set priority to robot turn right. The white area shows the 
regions that haven’t been capture by the camera.  And all the 
area is unknown except the area captured by camera. The 
variable t represents sampling times that initiates from 0. 

 
6·1 Far-ranging grass lies in depth direction  

In Fig.10, START position is (0, 0)[mm], GOAL position is 
(0, 5000) [mm], rectangle Top-Left and Bottom-Right points of 
grassy field are (-1500, 4000) [mm] and (1500, 2000) [mm]. 

Under the condition, the robot detects grassy geography and 
detours to right. Finally, the robot turns from a left bottom 
corner, and successful reaches GOAL. 
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6·2 Narrowly-ranging grass lies in depth direction  
In Fig.11, START position and GOAL position are same 

with Fig.10, rectangle Top-Left and Bottom-Right points of 
grassy field are (-1500, 2230) [mm] and (1500, 2000) [mm].  

Under this condition, the robot detects grassy geography and 
detours as it is. However, different from the case mentioned 
above, recognizing the grass area is narrow then the robot 
selects the path traversing the grass geography, and successful 
reaches GOAL. 
    
6·3 Asphalt road runs up as hook form 
 

In Fig.12, START position is (0, 0) [mm], GOAL position is 
(-9000, 9000) [mm], asphalt field spreads as hook form. 

Under this condition, the robot detects grassy geography, 
and aims for GOAL along grassy field. Then, having passed the 
grassy geography, the robot goes straight toward GOAL. 
However the mobile robot again detecting another grassy 
geography, the robot aims for GOAL along the new grassy field. 
Finally, the robot successful reaches GOAL. 
 

7. CONCLUSION 
 

In this research, we propose the following algorithm are 
describe as below: 
・Based on geographical information, pathes were created. 

The geographical information was transformed into a 
1-dimensional evaluation value that expresses the difficulty of 
movement for the robot. 
・The target path was generated by changing the target angle 

α and the control angle θ. 
・The situations are classified into either Approach to GOAL 

or Neighbor of GOAL, and the path planning algorithm is 
switched to another one. 
・The robot was assumed to be two points object. 
From the experimental results, we can conclude as below: 
・After recognizing geographical feature, the robot performs 

path planning based on generated environmental map 
embedded geographical evaluation value, and, successfully, 
reaches GOAL. 
・The robot passed through a grassy geography in the case 

that the grass area is narrowly ranging. Contrary to this, in the 
other case that the grassy area is far ranging, the robot escapes 
the grassy area. 
・The robot dead reckoning by sensor fusion with error 

model method success to reduce the accumulated error during 
traveling in various geographical environments. 
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