• Title/Summary/Keyword: Path error

Search Result 904, Processing Time 0.026 seconds

A Self-Calibrated Localization System using Chirp Spread Spectrum in a Wireless Sensor Network

  • Kim, Seong-Joong;Park, Dong-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.253-270
    • /
    • 2013
  • To achieve accurate localization information, complex algorithms that have high computational complexity are usually implemented. In addition, many of these algorithms have been developed to overcome several limitations, e.g., obstruction interference in multi-path and non-line-of-sight (NLOS) environments. However, localization systems those have complex design experience latency when operating multiple mobile nodes occupying various channels and try to compensate for inaccurate distance values. To operate multiple mobile nodes concurrently, we propose a localization system with both low complexity and high accuracy and that is based on a chirp spread spectrum (CSS) radio. The proposed localization system is composed of accurate ranging values that are analyzed by simple linear regression that utilizes a Big-$O(n^2)$ of only a few data points and an algorithm with a self-calibration feature. The performance of the proposed localization system is verified by means of actual experiments. The results show a mean error of about 1 m and multiple mobile node operation in a $100{\times}35m^2$ environment under NLOS condition.

A study on the evaluation of control performance of active muffler for exhaust noise control (배기소음 제어용 능동형 소음기의 제어 성능평가에 관한 연구)

  • Kim, Heung-seob;Shon, Dong-Gu;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 1998
  • Active mufflers have been mainly applied in the large industrial engine due to considerable expense for implementation, but a necessity of development has been increased by the tightened regulation of exhaust noise and the request of high power. In this study, the active muffler prototype for installing in an automobile is designed and constructed. The active muffler is designed so that the primary noise and the control sound are propagated as a plane wave in the outlet. Therefore, the error microphone could be placed outside the high temperature centers of the tail pipe, and the noise radiating to the outside could be reduced in the whole areas around the outlet. For evaluating the control performance of the prototype, the control experiments of band-pass filtered random signal and the modulation of sinusoidal signal which are generated from the primary noise speaker as practical exhaust sound level are implemented. And to investigate the radiation pattern from the outlet of tail pipe and the noise reduction level of points placed adjacent to the outlet, the sound level of adjacent points of thirty is measured.

Performance Improvement of Active Noise Control Using Co-FXLMS Algorithm (Co-FXLMS 알고리듬을 이용한 능동소음제어 성능의 향상)

  • Kwon, O-Cheol;Lee, Gyeong-Tae;Park, Sang-Gil;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.284-292
    • /
    • 2008
  • The active control technique mostly uses the least-mean-square(LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS(FXLMS) algorithm is applied to an active noise control(ANC) system. However, FXLMS algorithm has the demerit that stability of the control is decreased when the step size become larger but the convergence speed is faster because the step size of FXLMS algorithm is fixed. As a result, the system has higher probability which the divergence occurs. Thus the Co-FXLMS algorithm was developed to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation and experimental results show that active noise control using Co-FXLMS is effective in reducing the noise in duct system.

Simulation of Active Noise Control on Harmonic Sound (복수조화음에 대한 능동소음제어 시뮬레이션)

  • Kwon, O-Cheol;Lee, Gyeong-Tae;Lee, Hae-Jin;Yang, In-Hyung;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.737-742
    • /
    • 2007
  • The method of the reducing duct noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequencies (below 500Hz) and is limited by the space. On the other hand, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases slightly so it may delay the convergence time when the FXLMS algorithm is applied to the active control of duct noise. Thus the Co-FXLMS algorithm was developed to improve the control performance in order to solve this problem. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. In this paper, the performance of the Co-FXLMS algorithm is presented in comparison with the FXLMS algorithm. Simulation results show that active noise control using Co-FXLMS is effective in reducing duct noise.

  • PDF

The Effects of Hippotherapy over 8 Weeks on Trunk Proprioception, Stability and Posture in Cerebral Palsy Patients (치료적 승마가 뇌성마비의 체간 고유수용성, 안정성 및 자세에 미치는 영향)

  • Jung, Jin-Hwa;Yu, Jae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.5
    • /
    • pp.63-70
    • /
    • 2010
  • Purpose: In this study, children with cerebral palsy were treated for 8 weeks using horse riding trunk proprioception, stability and posture to investigate the effect of hippotherapy in the field of physical therapy. Methods: A total of 18 subjects were divided into an experimental group treated by horseback riding and a control group. Both groups were evaluated pre- and post-treatment. Trunk proprioception was measured three times in the sitting position with their eyes and ears closed to reach the target position the angle error of the mean was calculated. Trunk stability was measured using a forceplate and the data were used to calculate the postural sway path & postural sway velocity. Posture was evaluated using the Posture Assessment Scale (PAS). Results: After hippotherapy, the experimental group showed a significant improvement in trunk proprioception, stability and posture (p<0.05), but the control group improved in posture only (p<0.05). Trunk proprioception, stability and posture was significantly different between the two groups (p<0.05). Conclusion: Eight weeks of hippotherapy is effective in improving trunk proprioception, stability, and posture. Research using this therapy should be studied further as a possible new therapeutic approach in the field of physical therapy.

Hysteresis Compensation in Piezoceramic Actuators Through Preisach Model Inversion (Preisach 모델을 이용한 압전액츄에이터 이력 보상)

  • Chung C.Y.;Lee D.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1074-1078
    • /
    • 2005
  • In precision positioning applications, such as scanning tunneling microscopy and diamond turning machines [1], it is often required that actuators have nanometer resolution in displacement, high stiffness, and fast frequency response. These requirements are met by the use of piezoceramic actuators. A major limitation of piezoceramic actuators, however, is their lack of accuracy due to hysteresis nonlinearity and drift. The maximum error due to hysteresis can be as much as 10-15% of the path covered if the actuators are run in an open-loop fashion. Hence, the accurate control of piezoceramic actuators requires a control strategy that incorporates some form of compensation for the hysteresis. One approach is to develop an accurate model of the hysteresis and the use the inverse as a compensator. The Preisach model has frequently been employed as a nonlinear model for representing the hysteresis, because it encompasses the basic features of the hysteresis phenomena in a conceptually simple and mathematically elegant way. In this paper, a new numerical inversion scheme of the Preisach model is developed with an aim of compensating hysteresis in piezoceramic actuators. The inversion scheme is implemented using the first-order reversal functions and is presented in a recursive form. The inverted model is then incorporated in an open-loop control strategy that regulates the piezoceramic actuator and compensates for hysteretic effects. Experimental results demonstrate satisfactory regulation of the position of the piezoceramic actuator to the desired trajectories.

  • PDF

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

Establishment of Collaborative Decision Making Support Process in Pre-Final Design Step (건축 중간설계단계의 협력 의사결정 지원 프로세스 구축)

  • Oh Seung-Jun;Kwon Won;Kim kyung-Sik;Chun Jae-Youl
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.315-318
    • /
    • 2003
  • In Korea construction project case, architectural construction project is curtailed production because information network process within multidisciplinary isn't smooth. Particularly, the construction is not insufficient about performance, cost and material, construction process, etc. in result various question arises because of design error in construction step. And various mistake is made because communication path within multidisciplinary isn't smooth in architectural design and design change process. Therefore The final object of this study is to propose the establishment method of decision support process for the cooperative design in order to provides improved design coordination and optimize the building system.

  • PDF

Low-Power Systolic Array Viterbi Decoder Implementation With A Clock-gating Method (Clock-gating 방법을 사용한 저전력 시스톨릭 어레이 비터비 복호기 구현)

  • Ryu Je-Hyuk;Cho Jun-Dong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents a new algorithm on low power survivor path memory implementation of the trace-back systolic array Viterbi algorithm. A novel idea is to reuse the already-generated trace-back routes to reduce the number of trace-back operations. And the spurious switching activity of the trace-back unit is reduced by making use of a clock gating method. Using the SYNOPSYS power estimation tool, DesignPower, our experimental result shows the average $40{\%}$ power reduction and $23{\%}$ area increase against the trace-back unit introduced in [1].

An Adaptive Active Noise Cancelling Model Using M-Channel Subband QMF Filter Banks (M-채널 서브밴드 QMF 필터뱅크를 이용한 적응 능동소음제거 모델)

  • 허영대;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1999
  • A wideband active noise cancelling system involves adaptive filters with hundreds of taps. The computational burden required with these long adaptive filters. This paper presents active noise cancelling system using M-channel QMF filter banks in which the adaptive weights are computed in subbands. The analysis and synthesis filter banks use cosine-modulated pseudo QMF filters. The reference signal for on-line identification of error path transfer characteristics is used to difference signal between the output of adaptive filters and the output of lowpass subband filters. The proposed adaptive subband filter bank suggests robust active noise cancelling system retaining the computational complexity and convergence speed advantaged of subband processing.

  • PDF