• Title/Summary/Keyword: Path Tracking Control

Search Result 296, Processing Time 0.033 seconds

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

Path Tracking Control for a Wheeled Mobile Robot using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차륜형 이동로봇의 경로추종제어)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.731-737
    • /
    • 1999
  • This paper describes the path tracking control for a mobile robot which has two casters at the front and rear to keep balance and two driving wheels on the left and right sides of its body. Power wheeled steering method is adapted to control heading of the robot. It is very difficult to find appropriate feedback gains when linear regulator control scheme is adapted to path tracking con-trol of this type of robot. Therefore in this paper we propose the path tracking control algorithm using the fuzzy logic control scheme for this type of root. Simulation to prove the validity of the proposed two algorithms is performed. The results are reported as last part in this paper.

  • PDF

A Study on the Path Constraint Error Reducing Trajectory Planning (Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구)

  • Hwang, Seung-Jae;Park, Se-Woong;Kim, Dong-Jun;Kim, Kab-Il;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Robot Path Planning Method for Tracking Error Reduction (로봇의 추적오차 감소를 위한 궤적계획방법)

  • Kim, Dong-Jun;Kim, Gap-Il;Park, Yong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Geometric Path Tracking and Obstacle Avoidance Methods for an Autonomous Navigation of Nonholonomic Mobile Robot (비홀로노믹 이동로봇의 자율주행을 위한 기하학적 경로 추종 및 장애물 회피 방법)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.771-779
    • /
    • 2010
  • This paper presents a method that integrates the geometric path tracking and the obstacle avoidance for nonholonomic mobile robot. The mobile robot follows the path by moving through the turning radius given from the pure pursuit method which is the one of the geometric path tracking methods. And the obstacle generates the obstacle potential, from this potential, the virtual force is obtained. Therefore, the turning radius for avoiding the obstacle is calculated by proportional to the virtual force. By integrating the turning radius for avoiding the obstacle and the turning radius for following the path, the mobile robot follows the path and avoids the obstacle simultaneously. The effectiveness of the proposed method is verified through the real experiments for path tracking only, static obstacle avoidance, dynamic obstacle avoidance.

Position estimation and path-tracking for wheeled mobile robots with nonholonomic constraints (Nonholonomic 제약을 가지는 구륜 이동 로보트의 위치추정과 경로추적)

  • 정대경;문종우;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.932-935
    • /
    • 1996
  • This paper proposes position estimation and path-tracking of a wheeled-mobile robot(WMR). Odometry and two distance measuring sensors are used to measure distance between guide wall and body and to locate its own position. And extended Kalman filter is introduced to fusion sensors and reduce noise. State feedback controller using the estimated position and path-tracking miles guidance control system. The computer simulation shows that proposed algorithm is well coincide with theoretical approach.

  • PDF

Full Dynamic Model in the Loop Simulation for Path Tracking Control of a 6$\times$6 Mobile Robot (6$\times$6 이동로봇의 경로추종을 위한 동역학 시뮬레이션)

  • Huh, Jin-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In this paper, we develop a detailed full dynamic model which includes various rough terrains for 6-wheel skid-steering mobile robot based on the real experimental autonomous vehicle called Dog-Horse Robot. We also design a co-simulation for performance comparison of path tracking algorithms. The control architecture in the co-simulation can be divided into two levels. The high level control is the closed-loop control of path tracking to follow a given path, and the low level is concerned about torque control of wheel motion. The simulation using the mechanical data of the Dog-Horse Robot is performed under the Matlab/Simulink environment. We also simulate and evaluate the performance of the model based adaptive controller.

A Path Tracking Control Algorithm for Autonomous Vehicles (자율 주행차량의 경로추종 제어 알고리즘)

  • 안정우;박동진;권태종;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.

  • PDF

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi (RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어)

  • Kim, Young-Shik;Lee, Ji-Hong;Kim, Jin-Ha;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.