• Title/Summary/Keyword: Path Planning and Control

Search Result 347, Processing Time 0.031 seconds

Development of Autonomous Algorithm for Boat Using Robot Operating System (로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발)

  • Jo, Hyun-Jae;Kim, Jung-Hyeon;Kim, Su-Rim;Woo, Ju-Hyun;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

A Method for Local Collision-free Motion Coordination of Multiple Mobile Robots

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1609-1614
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. To implement the concept in collision avoidance of multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

  • PDF

Use of the Delayed Time Fuzzy Controller for Obstacle Avoidance of Mobile Robot (지연시간 퍼지제어기를 이용한 이동로봇의 장애물 회피)

  • Ryu, Yeong-Soon;Ga, Chun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.570-575
    • /
    • 2000
  • This paper presents a delayed time path planning method of the Autonomous Mobile Robot using fuzzy logic controller for avoidance of obstacles in unknown environment. It is the objective of this paper to develop fuzzy control algorithms using delayed time techniques to deal with moving obstacles randomly. This control method gives the benefit of the collision free movement in real time and optimal path to the pre-settled goal. The computer simulations are demonstrated the effective of the suggested control method in obstacle avoidance.

  • PDF

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF

Near-Time-Optimal Path Planning of Mobile Robot Using Dynamic Programming (동적 프로그래밍을 이용한 자율이동로봇의 최소시간 경로계획)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.355-356
    • /
    • 2008
  • 자율이동로봇의 기구학 및 동력학 모델을 통해 로봇의 특성을 고려하여 목표점까지 이동시간이 최소화 되는 경로 생성 방법을 제안한다. 본 논문에서는 초기 전역 경로를 골격선 그래프와 딕스트라알고리즘으로 설정하고, 로봇 기구학 및 동력학 제악조건을 고려하여 동적 프로그래밍으로 경로를 개선한다. 개선된 경로는 자율이동로봇이 이동하는데 걸리는 시간을 단축한다. 마지막으로 시뮬레이션을 통해 제안하는 방법의 성능을 검증한다.

  • PDF

A path planning method for indoor Self-driving robot based on ROS (실내 자율주행을 위한 ROS 기반 이동 로봇의 경로 계획 방법)

  • Baek, Ji-Hoon;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.238-241
    • /
    • 2018
  • 본 논문은 Linux ubuntu에서 로봇 개발 플랫폼 ROS(Robot Operating System)을 이용하여 실내 자율주행 관련 패키지와 LRF센서를 사용한 경로탐색을 하기까지의 과정 그리고 향후의 설계 방안에 대해 다룬다.

Navigation control of mobile robot using elliptical world model (타원형 환경 모델을 이용한 이동로보트의 주행 제어)

  • 한재종;이기철;고재원;김현태;이희진;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.21-32
    • /
    • 1997
  • This paper proposes an elliptical world-modeling mehtrod in order to secure the safety of the mobile robot from the unreliability of ultrasonic sensors and to estimate the lateral orientation of the detected objects. This method is advnatageous because the total amount of data that the robot utilizes is reduced when historical and new data are clusterd during each sensing period and also because the objects in the environment can be almost exactly recognized. This paper also proposes a new local path planning algorithm which is divided into four different situations and gudies the robot through the safe local path using dat acollected in elliptical form. This algorithm can help the AMR navigate by allowing it to sum up the virtual vector forces made form the ellipses in order to select a safe subgoal. This local path plannin gmehtod using the elliptical world model has been proved by several navigation experiments.

  • PDF

Causal Relationships between Time Management Ability, Self Management and Its Related Factors among Adolescents (청소년의 시간관리능력과 자기생활관리에 영향을 미치는 제변인들의 인과관계분석)

  • Jeong, Ho-Sun;Jang, Yoon-Ok
    • Journal of the Korean Home Economics Association
    • /
    • v.47 no.7
    • /
    • pp.45-58
    • /
    • 2009
  • The purpose of this study was to investigate the effects of individual variables, mother related variables, and timemanagement ability on self-management of adolescents. In addition, the direct and indirect effects of these variables on self-management were also assessed. The subjects of this study were 496 students who were selected at random from middle schools in Daegu. The questionnaire was used for this survey, consisted of a self-management, a timemanagement, a self-efficacy, an internal locus of control, mother’s home management, and mother’s support scale. Factor analysis, multiple regression analysis and path analysis were employed for data analysis. The major findings of this study were as follows: First, mother’s home management planning ability had the most affect on adolescent time-management ability in terms of planning and implementing, while self-efficacy had the most affect on time-management evaluating ability. Second, adolescent’ time-management planning ability had the most affect on lifestyle and money management, time-management implementing ability on studies management, self-efficacy on health management, and internal locus of control on interpersonal relation management of adolescents. Third, among adolescent self-management, lifestyle management, studies management and money management can be achieved through the mediation of adolescent time management ability. They exhibit indirect influence through adolescent self-efficacy, internal locus of control, mother’s home-management planning ability, and mother’s home-management implementing ability. Furthermore, time-management ability is also influenced through the mediation of health management and interpersonal relation management, but is not indirectly affected by selfefficacy, internal locus of control, time planning ability, and time implementing ability.