• 제목/요약/키워드: Path Analysis

검색결과 4,526건 처리시간 0.032초

비행경로각 조정에 의한 중거리 탄도미사일의 비행궤적 특성 해석 (Analysis of Flight Trajectory Characteristics of the MRBM by Adjusting the Angle of a Flight Path)

  • 김지원;권용수
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.173-180
    • /
    • 2015
  • North Korea has developed ballistic missiles over the past 30 years. It is believed that they have a variety of ballistic missiles more than 1,000. Because these ballistic missiles threaten South Korea directly, accurate analysis of them is essential. Flight trajectories of the ballistic missiles are generally changed by means of adjusting payload weight, Isp, flight path angle, and cut-off time. The flight path angle is widely used to control the missile range. However it is difficult to predict the missile trajectory exactly in real operational environment because the missile could be launched according to its intention and purpose. This work analyzed the 1,000 km range MRBM's trajectory characteristics from adjusting flight path angle which is depressed as well as lofted method. The analysis of missile trajectory characteristics is based on the simulation of the missile trajectory model developed by KNDU research team.

내부마케팅과 동기부여, 간호조직유효성간의 경로모형구축 (A Path Analysis among the Internal Marketing Activities, Motivation, and Nursing Organizational Effectiveness)

  • 임지영
    • 간호행정학회지
    • /
    • 제11권4호
    • /
    • pp.371-384
    • /
    • 2005
  • Purpose: The aim of this study was to analysis path model of the research variables. Methods: The subjects of this study were 647 nurses who were working in the 8 general hospitals located in Seoul and Incheon area. The data were collected by self-reporting questionnaires. The data were analyzed using descriptive statistics and path analysis. Results: In the modified path model, overall fitness indexes were $X^2$= 223.27, goodness of fit index=0.90, root mean square residual=0.039, root mean square error of approximation=0.12, non-normed fit index=0.96, and normed fit index=0.90. From the model, among research variables that influence organizational effectiveness motivator, job satisfaction and organizational identification affected directly work performance. In internal marketing factors, paid-leave, communication and reward affected directly motivator. Motivator and hygiene factors affected directly job satisfaction, organizational commitment and organizational identification. Conclusion: With these findings, paid-leave, communication, reward, motivator, job satisfaction and organizational identification were direct or indirect predictors of the work performance. Therefore nursing managers ought to develop internal marketing strategies and motivation enhancing system for nurses based on this path model in order to improve the nursing organizational effectiveness.

  • PDF

진동 동력 흐름 예측 기법을 이용한 소음 전달 경로 해석 및 차량의 실내소음저감에 관한 연구 (A Study on Noise Transfer Path Analysi for Sound Improvement of Vehicle Using the Vibrational Power Flow)

  • 이상권
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.168-175
    • /
    • 2001
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do net quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

Magnus Rotor 자탄의 초기 방출조건이 분산도에 미치는 영향에 대한 정량적 분석 (Quantitative Analysis of Initial Dispersion Condition Effects on Randomness of Magnus Rotor Bomblet)

  • 배익현
    • 한국시뮬레이션학회논문지
    • /
    • 제28권3호
    • /
    • pp.83-89
    • /
    • 2019
  • 본 연구는 회전 비행체(Magnus rotor)를 탑재한 분산탄두의 분산 균일도에 미치는 요인 분석과 성능지표를 도출하기 위해 모탄의 속도 V와 회전속도 ${\omega}$, 비행경로각(flight path angle) ${\gamma}$ 그리고 고도 h의 변화에 따른 해석 결과를 기술했으며, 이때 모탄의 회전속도와 속도의 비를 새로운 변수로 정의했다. 자탄의 분산 해석에는 풍동실험을 통해 획득한 공력계수를 사용한 6 자유도 운동방정식을 이용했으며, 분산도 분석을 위해 회귀분석과 결정계수를 구해 분산도를 평가했다. 해석결과 최적의 회전속도와 낙하속도의 비, 비행경로각(flight path angle)을 구할 수 있었으며, 방출고도는 분산도에 회전속도와 낙하속도의 비, 비행경로각(flight path angle)의 영향에 비해 영향은 크지 않고, 자탄의 분산반경에 영향이 큰 것을 확인했다.

머신 비젼을 이용한 2축 스테이지의 마이크로 원형 궤적 실시간 측정 및 분석 (Real-time Measurement and Analysis for Micro Circular Path of Two-Axes Stage Using Machine Vision)

  • 김주경;박종진;이응석
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.993-998
    • /
    • 2007
  • To verify the 2D or 3D positioning accuracy of a multi-axes stage is not easy, particularly, in the case the moving path of the stage is not linear. This paper is a study on a measuring method for the curved path accurately. A machine vision technique is used to trace the moving path of two-axes stage. To improve the accuracy of machine vision, a zoom lens is used for the 2D micro moving path. The accuracy of this method depends of the CCD resolution and array align accuracy with the zoom lens system. Also, a further study for software algorithm is required to increase the tracing speed. This technique will be useful to trace a small object in the 2D micro path in real-time accurately.

Bypass, homotopy path and local iteration to compute the stability point

  • Fujii, Fumio;Okazawa, Shigenobu
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.577-586
    • /
    • 1997
  • In nonlinear finite element stability analysis of structures, the foremost necessary procedure is the computation to precisely locate a singular equilibrium point, at which the instability occurs. The present study describes global and local procedures for the computation of stability points including bifurcation points and limit points. The starting point, at which the procedure will be initiated, may be close to or arbitrarily far away from the target point. It may also be an equilibrium point or non-equilibrium point. Apart from the usual equilibrium path, bypass and homotopy path are proposed as the global path to the stability point. A local iterative method is necessary, when it is inspected that the computed path point is sufficiently close to the stability point.

A Shortest Path Planning Algorithm for Mobile Robots Using a Modified Visibility Graph Method

  • Lee, Duk-Young;Koh, Kyung-Chul;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1939-1944
    • /
    • 2003
  • This paper presents a global path planning algorithm based on a visibility graph method, and applies additionally various constraints for constructing the reduced visibility graph. The modification algorithm for generating the rounded path is applied to the globally shortest path of the visibility graph using the robot size constraint in order to avoid the obstacle. In order to check the visibility in given 3D map data, 3D CAD data with VRML format is projected to the 2D plane of the mobile robot, and the projected map is converted into an image for easy map analysis. The image processing are applied to this grid map for extracting the obstacles and the free space. Generally, the tree size of visibility graph is proportional to the factorial of the number of the corner points. In order to reduce the tree size and search the shortest path efficiently, the various constraints are proposed. After short paths that crosses the corner points of obstacles lists up, the shortest path among these paths is selected and it is modified to the combination of the line path and the arc path for the mobile robot to avoid the obstacles and follow the rounded path in the environment. The proposed path planning algorithm is applied to the mobile robot LCAR-III.

  • PDF

Path planning on satellite images for unmanned surface vehicles

  • Yang, Joe-Ming;Tseng, Chien-Ming;Tseng, P.S.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.87-99
    • /
    • 2015
  • In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs) and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle $A^*$ algorithm ($FAA^*$), an advanced $A^*$ algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV.

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF