무인화 기술은 전기, 전자, 기계, 인공지능 기술과 ICT 기술 등 다양한 기술들을 융 복합하는 대표적인 기술이다. 특히 지상 무인화 기술은 군사 분야에서 많은 연구 개발과 발전을 이루고 있으며 활용 영역을 확장하고 있다. 본 연구에서는 특허정보 분석을 위해 새로운 특허정보 분석 방법론을 제시하고, 지상 무인화 기술 관련 특허정보를 본 연구에서 제시한 특허정보 분석 방법을 이용하여 분석하였다. 핵심특허 및 기술을 추출하기 위한 특허정보 분석 프로세스는 6단계로 분석 대상 기술선정, 세부 기술 분류, 특허정보 수집, 특허정보 분석 방법 선정, 특허정보 분석, 마지막으로 핵심특허 및 핵심 기술 추출로 이루어 진다. 세부적으로 지상무인화 기술에 대한 기술 분류를 실시하고, 특허지수인 CPP와 IPC 코드 연결성 분석을 통해 지상 무인화 기술의 핵심기술과 핵심특허를 추출하였다. 제시된 특허정보 분석 방법을 이용한 특허정보 분석 결과는 다양한 분야의 기술에 적용하여 분석이 가능하고, 향후 연구개발 방향을 전망하는 자료로 활용할 수 있다.
Purpose Artificial Intelligence (AI) is a core technology, leading the 4th industrial revolution. This study aims to diagnose the Korean's national competitiveness for AI technologies through patent analyses. Design/methodology/approach In this study, KIWEE and Derwent Innovation databases were used as data source of patents. we extracted 10,510 AI patents data with keywords and classified them into 15 subcategories of AI technology. We executed patent analyses for activity index, patent intensity index, technology strength, and patent family size and diagnosed Korea's national competitiveness in AI industry. Findings The results showed that Korea is less competitive than the United States and Japan in AI industry. However, patent amount has increased since 2010, which is encouraging result. This study has implication on the need for human and R&D investment in AI industry.
In this paper, we propose wide range of categorizes Artificial Intelligence technology as Learning, Inference, and Cognitive. Also, it analyzes 758 cases of open patents. For an analysis, target technologies were selected and categorized into specific areas to collect information about the patents. After removing noise, the patent information for each technology such as patent assignees and IPC code, was analyzed to evaluate the maturity of technology, the way ahead for research and development and the trends in core technology. This research presents directions of Artificial intelligence technology research and trend analysis of core Artificial Intelligent technology using quantitative analysis of patent information. Also Artificial intelligence technology requires technological development necessity through close cooperation in diverse fields.
In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.
Kim, Daejung;Jeong, Joong-Hyeon;Ryu, Hokyoung;Kim, Jieun
한국컴퓨터정보학회논문지
/
제24권1호
/
pp.25-32
/
2019
With the rapid development of artificial intelligence technology, the patenting activities related to the fields of AI is increasing worldwide. In particular, a share of patent filed in China has exploded in recent years and overtakes the numbers in the US. In the present study, we focus our attention on the patenting activity of China and the US. We analyzed 6,281 and 13,664 patent applications in the US and China respectively between 2008 and 2018, and belonging to the "G06F(Electric Digital Data Processing)", "G06N(Computer Systems Based on Specific Computational Models)", "H04L(Transmission of Digital Information)" and nine more relevant technological classes, as indicated by the International Patent Classification(IPC). Our analysis contributes to: first, the understanding of patent application trends from foreign countries filed in the US and China, 2) patent application status by applicants category such as companies, universities and individuals, 3) the development direction and forecasting vacant technology of AI according to main IPC code. Through the analysis of this paper, we can suggest some implications for patent research related to artificial intelligence in Korea. Plus, by analyzing the most recent patent data, we can provide important information for future artificial intelligence technology research.
Now days, firm's technology capability is recognized as important factor to forecast and to evaluate firm's business performance. There are many efforts to develop useful indicators by applying patent information that includes concrete description about technology. Many previous studies analyzed relationship between patent indicators and firm's performance. But they didn't consider time gap between a point of firm's invention activity and a point of firm's performance improvement. They didn't considered a character of industrial fields either. To overcome these limitations, we selected IT industry for target analysis industry. Time-series patent data and financial data from 41 American IT firms between 2000 and 2011 were used to analyze. In this study, We empirically analyzed subsequent effect of patent indicators on firm's business performance by using correlation analysis and regression analysis.
본 논문에서는 미용기기 분야에 대한 특허 동향 분석을 통해 주요 경쟁자별 기술경쟁력 등의 분석을 실시하고, 지식재산권 중심의 기술 동향 분석 등을 바탕으로 과제기술의 특허 포트폴리오 및 특허 확보 전략을 도출하였다. 전략적인 IP(Intellectual Property) 기반 연구개발 계획 수립에 활용할 수 있도록 특허 포트폴리오를 분석하여 특허 장벽 및 공백분야를 제시함으로써, 연구개발의 방향을 설정하기 위한 기초정보로 활용하여 중복연구를 방지하고 연구개발과제 수행의 타당성에 대한 객관적인 특허정보를 제공하고자 한다.
최근 지식기반 사회의 진입과 더불어 지식재산에 대한 관심이 증가하고 있다. 특히 하이테크산업을 이끌고 있는 ICT기업들은 지식재산의 체계적 관리를 위하여 끊임없이 노력하고 있다. 기업의 지적 자본을 대표하는 특허정보가 지속적으로 축적됨에 따라 정량적인 분석이 가능해졌다. 특허정보를 통하여 특허수준부터 기업수준, 산업수준, 국가 수준에 이르기 까지 다양한 수준에서의 분석이 가능하다. 특허정보는 기술 현황을 파악하거나 성과에 미치는 영향을 분석하는데 활용되고 있다. 특허 인용 정보를 활용한 분석은 크게 두 가지로, 인용 횟수를 활용하는 인용지표 분석과 인용관계를 바탕으로 한 네트워크분석으로 나뉜다. 네트워크를 통한 분석은 지식 영향의 흐름을 나타내며, 이를 통하여 기술의 변화를 확인할 수 있을 뿐만 아니라 앞으로의 연구 방향을 예측할 수 있다. 네트워크를 활용한 분석 분야에서는 기업이 차지하는 네트워크상에서의 위치가 기업성과에 미치는 영향을 다각도에서 분석하는 연구가 진행되고 있다. 본 연구에서는 소셜네트워크분석 기법을 활용하여 특허 인용을 기반으로 한 기업 간의 네트워크를 도출하고 특허 인용 네트워크에서 차지하는 기업의 위치적 특성이 기업성과에 미치는 영향을 분석하였다. 이를 위해 미국 S&P500에 등록된 IT 및 통신서비스 기업 가운데 74개 기업을 표본으로 선정하였다. 소셜네트워크분석을 통하여 개별 기업들의 아웃디그리 중심성, 매개 중심성, 효율성(구조적 공백)을 측정하여 네트워크 상에서의 위치적 우위를 나타내는 독립변수로서 이용하였으며, 기업성과 변수로는 순이익을 사용하였다. 실증 분석 결과, 각각의 네트워크 지표는 기업성과인 순이익에 통계적으로 유의한 영향을 미치는 것으로 나타났다. 두 가지 중심성 지표는 기업성과에 정(+)의 영향을 미친 반면, 구조적 공백으로 인한 위치적 우위를 나타내는 효율성은 기업성과에 부정적(-)인 영향을 미치는 것으로 나타났다. 세 가지 네트워크 지표를 동시에 고려할 경우에는 매개 중심성만이 기업성과에 대해 통계적 유의성을 보였다. 분석 결과를 토대로 연구의 발견점을 토의하고 시사점을 논의하였다.
This study attempts to develop a methodology that analyzes patent applications to identify future skills, in particular in the sector of information security, recently into the spotlight. Matching skill elements from the International Patent Classification (IPC) with skill units from job analysis, the study tries to track trends in the skills needs based on IPC time-pattern. It then verifies the validity of the outlook for future skills needs by addressing the situation through the use of patents. The research assesses the usability of patent information for this type of analysis. While this study is limited to the information security sector by using Korean patent information, it can be expanded in the future to other areas and patents in the United States and Europe.
최근 지식기반 사회의 진입과 더불어 지식재산에 대한 관심이 증가하고 있다. 특히 하이테크산업을 이끌고 있는 ICT기업들은 지식재산의 체계적 관리를 위하여 끊임없이 노력하고 있다. 기업의 지적 자본을 대표하는 특허정보가 지속적으로 축적됨에 따라 정량적인 분석이 가능해졌다. 특허정보를 통하여 특허수준부터 기업수준, 산업수준, 국가수준에 이르기 까지 다양한 수준에서의 분석이 가능하다. 특허정보는 기술 현황을 파악하거나 성과에 미치는 영향을 분석하는데 활용되고 있다. 네트워크를 통한 분석은 지식 영향의 흐름을 나타내며, 이를 통하여 기술의 변화를 확인할 수 있을 뿐만 아니라 앞으로의 연구 방향을 예측할 수 있다. 네트워크를 활용한 분석 분야에서는 기업이 차지하는 네트워크상에서의 위치가 기업성과에 미치는 영향을 다각도에서 분석하는 연구가 진행되고 있다. 특허 인용 정보를 활용한 분석은 크게 두 가지로, 인용 횟수를 활용하는 인용지표 분석과 인용관계를 바탕으로 한 네트워크 분석으로 나뉜다. 본 연구는 기업간 규모의 차이가 기업 간 특허 인용 관계에 미치는 영향을 분석하고자 하였다. S&P 500에 등록된 IT 및 통신서비스를 제공하는 74개 기업을 선정하였으며 기업 간 특허 인용 관계를 구하기 위하여 2009년, 2010년의 특허 인용 정보를 수집하여 기업 간 특허 인용 관계를 나타냈다. 또한 기업규모를 대표하는 지표로 기업 총 자산에 대한 정보를 수집하였다. 기업규모에 따라 외부 지식에 대한 의존도가 달라지는 선행연구를 통하여 기업규모가 기업간 특허 인용 관계에 미치는 영향을 알아보고자 하였다. 이에 기업 간 총 자산의 차이에 절대값을 취한 값을 기업 간 거리로 정의하였으며, 기업 간 규모의 단순 차이를 기업 간 계층으로 정의하여 새로운 소시오매트릭스를 생성하였다. 2010년도 기업간 특허 인용 관계를 나타낸 소시오매트릭스를 종속변수로 하였으며, 2009년도 기업 간 특허 인용 네트워크, 기업 간 거리 및 계층을 독립변수로 하여 QAP분석 및 MR-QAP분석을 실시하였다. QAP분석 결과 기업 간 거리와 계층은 특허 인용 관계에 유의한 영향을 미치는 것으로 나타났다. MR-QAP분석에는 2009년도 기업 간 특허 인용 관계와 기업 간 거리만 유의함을 확인할 수 있었다. 특히 2009년도 기업 간 특허 인용 관계가 2010년도 기업 간 특허 인용 관계에 가장 큰 영향력을 행사하는 것을 볼 수 있어 기업 간 특허 인용관계는 연속성이 존재하는 것으로 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.