• Title/Summary/Keyword: Patching

Search Result 131, Processing Time 0.024 seconds

Technology Analysis on Automatic Detection and Defense of SW Vulnerabilities (SW 보안 취약점 자동 탐색 및 대응 기술 분석)

  • Oh, Sang-Hwan;Kim, Tae-Eun;Kim, HwanKuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.94-103
    • /
    • 2017
  • As automatic hacking tools and techniques have been improved, the number of new vulnerabilities has increased. The CVE registered from 2010 to 2015 numbered about 80,000, and it is expected that more vulnerabilities will be reported. In most cases, patching a vulnerability depends on the developers' capability, and most patching techniques are based on manual analysis, which requires nine months, on average. The techniques are composed of finding the vulnerability, conducting the analysis based on the source code, and writing new code for the patch. Zero-day is critical because the time gap between the first discovery and taking action is too long, as mentioned. To solve the problem, techniques for automatically detecting and analyzing software (SW) vulnerabilities have been proposed recently. Cyber Grand Challenge (CGC) held in 2016 was the first competition to create automatic defensive systems capable of reasoning over flaws in binary and formulating patches without experts' direct analysis. Darktrace and Cylance are similar projects for managing SW automatically with artificial intelligence and machine learning. Though many foreign commercial institutions and academies run their projects for automatic binary analysis, the domestic level of technology is much lower. This paper is to study developing automatic detection of SW vulnerabilities and defenses against them. We analyzed and compared relative works and tools as additional elements, and optimal techniques for automatic analysis are suggested.

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.

Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data (드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발)

  • Young-Ju Kwon;Sung-ho Mun
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Drones are used in various fields, including land survey, transportation, forestry/agriculture, marine, environment, disaster prevention, water resources, cultural assets, and construction, as their industrial importance and market size have increased. In this study, image data for deep learning was collected using a mavic3 drone capturing images at a shooting altitude was 20 m with ×7 magnification. Swin Transformer and UperNet were employed as the backbone and architecture of the deep learning model. About 800 sheets of labeled data were augmented to increase the amount of data. The learning process encompassed three rounds. The Cross-Entropy loss function was used in the first and second learning; the Tversky loss function was used in the third learning. In the future, when the crack detection model is advanced through convergence with the Internet of Things (IoT) through additional research, it will be possible to detect patching or potholes. In addition, it is expected that real-time detection tasks of drones can quickly secure the detection of pavement maintenance sections.

A Study on the Wearing Conditions of Golf Gloves and a Proposal for a Functional Glove Design (골프장갑의 착용실태 조사 및 기능성 향상을 위한 디자인 제안)

  • 류현숙;최혜선;김은경
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.6
    • /
    • pp.89-101
    • /
    • 2004
  • The aim of this study is to investigate problems with both fit and abrasion of golf gloves through a survey of golf usage among golfers over the age of 30, as well as by analyzing the golf glove industry with an emphasis on the size system and marketing situation. In addition, this study aims to suggest the basic raw materials for improving the design of golf gloves through physical properties inspections. The results of the analyses support the following suggestions. First of all, dissatisfaction arose from improper measurement in glove length. The survey showed that most problems occur in the pinky finger, while only the length of the middle finger of the glove is recorded based on Korean Standard Anthropometries Measurement. Clearly, proper measurements of every finger need to be included in the system. Secondly, the survey results clearly indicated regions 7(palm area) and 3(second finger area) as the areas requiring reinforcement. While the method of patching another layer with the same material is commonly used in the current glove market, materials other than genuine leather are unable to complement the abrasion. This study suggests that another layer of refill type genuine leather, which scored best in the physical properties inspection, needs to be patched onto regions 7 and 3.

A Study on Development of the Concrete Pavement Condition Index (콘크리트 포장상태 평가지수의 개발에 관한 연구)

  • Kwon, Soo-Ahn;Kim, Nam-Ho;Seo, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.145-153
    • /
    • 2000
  • Pavement evaluation is a fundamental component for rational pavement management. Optimal rehabilitation method and the priority of rehabilitation should be based on the evaluation data. Some types of pavement condition index are needed for objective evaluation of Pavement condition and management of road network. In this study a expressway concrete pavement condition index model is developed through regression analysis that correlates panel rating with distress measurement from the test sections. The derived condition index can be used for network level PMS for the expressway concrete pavement. Correlation coefficient of the model was 0.68. The selected independent variables were International Roughness Index, crack and area of patching.

  • PDF

Fatigue Behavior of Cracked Al 6061-T6 Alloy Structures Repaired with Composite Patch

  • Yoon, Young-Ki;Park, Jong-Joon;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.5-10
    • /
    • 2001
  • Due to the development of high-strength fibers and adhesives, it is now possible to repair cracked metallic plates by bonding reinforced patches to the plate over the crack. In this study, pre-cracked aluminum 6061-T6 alloy plates repaired with bonded carbon/epoxy composite patch are applied to investigate the effect of various patch shapes on the tensile strength and the fatigue behavior of the structure. A non-patch-boned cased and 2 type-50$\times$50, 40$\times$20 mm-composite patch-bonded cases were tested to obtain fracture loads and fatigue crack growth rate. The results showed that the patch-bonded repair improves the static strength by 17% and the fatigue life by 200% compared to non-repaired case. It means that patch-boned repair is more effective in the fatigue life. It was also revealed that the patching method along crack growth direction is more efficient in cost and weight reduction. By observing the fractography, patch-bonded repair specimens demonstrated zigzag fracture patterns compared with the non-patched specimens, which shows a typical ductile fracture.

  • PDF

A Code Banking-based High-speed Concurrent Software Update Method for Single Hop Wireless Sensor Networks (단일 홉 무선 센서 네트워크를 위한 코드 뱅킹 기반의 고속 병렬 소프트웨어 업데이트 기법)

  • Park, Young-Kyun;Nam, Young-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.949-963
    • /
    • 2011
  • Generally, It is indispensible to use an ISP(In System Programming) tool for upgrading, patching, or changing the system software of the each sensor nodes in wireless sensor networks. While under a small number of nodes, the upgrading task is not a serious burden, however if there are a large number of nodes to be updated, the task is almost impossible to do for the given constrains such as limited budgets and resources. Based on this observation, in this paper we have proposed a novel upgrading scheme based on a single hop in IEEE 802.15.4 PAN(Personal Area Network)s. Simulation results have shown the scheme outcomes the conventional methods in the performance measures.

Right Ventricular Myxoma Obstructing Right Ventricular Outflow Tract (점액종에 의한 우심실 유출로 협착)

  • Song Kwang-Jae;Yun Tae-Jin
    • Journal of Chest Surgery
    • /
    • v.39 no.8 s.265
    • /
    • pp.637-639
    • /
    • 2006
  • Cardiac myxoma is the most common primary tumor of the heart, but right ventricular myxoma causing outflow obstruction is relatively rare. A 15 years old girl developed dyspnea on exertion and intermittent syncope caused by a right ventricular mass obstructing the right ventricle outflow tract. Transthoracic echocardiography revealed $3.6{\times}3.0\;cm$ sized pedunculated subpumonic mass originating from the right ventricular anterior free wall. The patient underwent an emergency operation, consisting of the removal of the mass by wide excision of the tumor base and PTFE (polytetrafluoroethylene) patching of the right ventricular anterior free wall defect. Pathological findings of the mass were compatible with myxoma, and the patient was discharged uneventfully 7 days after the operation.

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

Tensile response of steel/CFRP adhesive bonds for the rehabilitation of civil structures

  • Matta, F.;Karbhari, Vistasp M.;Vitaliani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.589-608
    • /
    • 2005
  • There is a growing need for the development and implementation of new methods for the rapid and cost-effective rehabilitation of deteriorating steel structural components to offset the drawbacks related to welding and/or bolting in the field. Carbon fiber reinforced polymer (CFRP) composites provide a potential alternative as externally bonded patches for strengthening and repair of metallic structural members for building and bridge systems. This paper describes results of an investigation of tensile and fatigue response of steel/CFRP joints simulating scenarios of strengthening and crack-patching. It is shown that appropriately designed schemes, even when fabricated with levels of inaccuracy as could be expected in the field, can provide significant strain relief and load transfer capability. A simplified elasto-plastic closed form solution for stress analysis is presented, and validated experimentally. It is shown that the bond development length remains constant in the linear range, whereas it increases as the adhesive is deformed plastically. Fatigue resistance is shown to be at least comparable with the requirements for welded cover plates without attendant decreases in stiffness and strength.