• Title/Summary/Keyword: Patched grid system

Search Result 6, Processing Time 0.015 seconds

A Grid Adaptation Method Using the Chimera and Patched Grid Systems (중첩격자계와 접합격자계를 이용한 적응격자 기법)

  • Kim, De-Hee;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.17-25
    • /
    • 2005
  • A grid adaptation method within systems of chimera and patched grids is presented. Problem domains are divided into near-body and off-body fields. Near-body field is filled with curvilinear body-fitted grids that extend only a short distance from body surfaces and connected to other grid systems via chimera domain connectivity method. Off-body field is filled with patched uniform cartesian grids of varying levels of refinement. This method gives flexibility in grid generation and efficient adaptation capability. Several numerical experiments including 2D store separation were performed to show the performance of the proposed adaptation method.

Computational Analysis of the Delta Wing-Cylindrical Body Configuration Using the Three-Dimensional Patched-Grid Algorithm (3차원 patched-grid 알고리즘을 이용한 삼각 날개-원통형 동체 형상 전산 해석)

  • Park, Hyeon Don;Kim, Young Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • A structured grid system can be efficiently constructed by applying the patched-grid algorithm that alleviates many constraints of the conventional structured grid system. Three approaches were applied to case 4 of the EFD-CFD workshop: delta wing-cylindrical body shape to solve the existing grid generation problems and verify the results by comparing them with experimental data. Surface pressure distributions slightly differed from the experimental data at high angles of attack. The slope variation of the pitching moment with Mach number is analyzed and the variation can be explained with the tuck under phenomenon. In the supersonic region, the bow shock waves in front of the shape expand the region generating lift up to the rear of the configuration. Also, the tendency of the pitching moment with both Mach number and angle of attack was analyzed by comparing the positions of the center of pressure and the center of gravity.

Analysis of Turbomachinery Internal Flow Using Parallel Computing (병렬컴퓨팅을 이용한 터보기계 내부 유동장 해석)

  • Yee, Jang-Jun;Kim, Yu-Shin;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.586-592
    • /
    • 2000
  • 터보머신 태부에 존재하는 정익 - 동익의 상호작용 유동현상을 수치모사 하는 코드를 병렬화 하였다 정익 - 동익의 상호작용을 해석하는 데에 편리하도륵 Multi-Block Grid System을 도입하여 계산영역을 형성하였고, 동익의 움직임으로 인해 발생하는 Sliding Interface부분은 Patched 알고리즘을 적용하여 해석하였다. 정익과 동익의 수를 1대 1로 단순화시켜 수치모사한 결과와 정익과 동익의 수를 실제 조건과 더 비슷하게 설정한 3대 4의 비율로 맞추어 수치모사한 결과를 비교하였다. 또한, 병렬컴퓨팅으로 인해 단축된 계산시간을 다른 연구에서의 계산시간들과 서로 비교하였다. 2차원 비정상 압축성 Navier-Stokes 방정식이 이용되었고, 난류모델링에는 K-w SST 모델링이 적응되었다. Roe의 FDS 기법을 사용하여 플럭스를 계산하였고, MUSCL 기법을 적용하여 3차의 공간정확도를 갖도록 하였다. 시간적분에는 이보성의 DP-SGS를 사용하였다. 해석결과의 분석에는 Time-averaged pressure distribution과 Pressure amplitude distribution 데이터를 사용했다.

  • PDF

Analysis of Stator-Rotor Interactions by using Parallel Computer (정익-동익 상호작용의 병렬처리해석)

  • Lee J. J.;Choi J. M.;Lee D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • CFD code that simulates stator-rotor interactions is developed applying parallel computing method. Modified Multi-Block Grid System which enhances perpendicularity in grid and is appropriate in parallel processing is introduced and Patched Algorithm is applied in sliding interface which is caused by movement of rotor. The experimental model in the turbo-machine is composed of 11 stators and 14 rotors. Analyses on two test cases which are one stator - one rotor model and three stators - four rotors model are performed. The results of the two cases have been compared with the experimental test data.

  • PDF

Numerical Simulation of the Unsteady Flow Field Induced by a High-speed Train Passing through a Tunnel (터널을 통과하는 고속철도차량에 의해 형성되는 비정상 유동장의 수치해석)

  • 권혁빈;이동호;김문상
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.229-236
    • /
    • 2000
  • In this study, the unsteady flow field induced by a high-speed train passing through a tunnel is numerically simulated by using an axi-symmetric Euler Equation. The modified patched grid scheme applied to a structured grid system was used to handle the relative motion of a train. The hybrid-dimensional approach which mixed 1D and axi-symmetric dimension was used to reduce the computation time and memory storage. By employing the hybrid-dimensional approach, a long tunnel as much as 5 km was able to be simulated efficiently. The results show that the maximum pressure rise in the tunnel by the entrance of the train is a function of both train speed and train-tunnel cross-sectional area ratio. The unsteady pressure fluctuation in the tunnel and around the train was also investigated in the real condition; Korean high-speed train on the Seoul-Pusan line.

  • PDF

A STUDY ON THE MINIMUM CROSS-SECTIONAL AREA OF HIGH-SPEED RAILWAY TUNNEL SATISFYING PASSENGER EAR DISCOMFORT CRITERIA (승객 이명감 기준을 만족하는 고속철도 터널 최소 단면적에 대한 연구)

  • Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.62-69
    • /
    • 2015
  • Pressure change inside cabin as well as in tunnel has been calculated to assess the passenger pressure comfort of high-speed train. $C-STA^{TM}$, a CFD program based on axi-symmetric Navier-Stokes equation and Roe's FDS has been used to simulate the pressure change in tunnel during a high-speed train passing through it. To present the relative motion between the train and the tunnel, a modified patched grid scheme based on the structured grid system has been employed. The simulation program has been validated by comparing the simulation results with field measurements. Extensive parametric study has been conducted for various train speed, tunnel cross-sectional area and tunnel length to the pressure change in cabin. KTX-Sancheon(KTX2) high-speed train has been chosen for simulation and the train speed have been varied from 200 km/h to 375 km/h. The tunnel length has been varied from 300 m to 7.5 km and tunnel area from $50m^2$ to $120m^2$. Total 504 simulations have been conducted varying the parameters. Based on the database produced from the parametric simulations, minimum tunnel cross-sectional area has been surveyed for various train speeds based on Korean regulation on pressure change in cabin.