• Title/Summary/Keyword: Patch-clamp

Search Result 307, Processing Time 0.023 seconds

Reactive Oxygen Species and Nitrogen Species Differentially Regulate Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are implicated in cellular signaling processes and as a cause of oxidative stress. Recent studies indicate that ROS and RNS are important signaling molecules involved in nociceptive transmission. Xanthine oxidase (XO) system is a well-known system for superoxide anions ($O{_2}^{{\cdot}_-}$) generation, and sodium nitroprusside (SNP) is a representative nitric oxide (NO) donor. Patch clamp recording in spinal slices was used to investigate the role of $O{_2}^{{\cdot}_-}$ and NO on substantia gelatinosa (SG) neuronal excitability. Application of xanthine and xanthine oxidase (X/XO) compound induced membrane depolarization. Low concentration SNP ($10{\mu}M$) induced depolarization of the membrane, whereas high concentration SNP (1 mM) evoked membrane hyperpolarization. These responses were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger). Addition of thapsigargin to an external calcium free solution for blocking synaptic transmission, led to significantly decreased X/XO-induced responses. Additionally, X/XO and SNP-induced responses were unchanged in the presence of intracellular applied PBN, indicative of the involvement of presynaptic action. Inclusion of GDP-${\beta}$-S or suramin (G protein inhibitors) in the patch pipette decreased SNP-induced responses, whereas it failed to decrease X/XO-induced responses. Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) decreased the effects of SNP, suggesting that these responses were mediated by direct oxidation of channel protein, whereas X/XO-induced responses were unchanged. These data suggested that ROS and RNS play distinct roles in the regulation of the membrane excitability of SG neurons related to the pain transmission.

Potassium Currents in Isolated Deiters' Cells of Guinea Pig

  • Chung, Jong Woo;Nam, Eui Chol;Kim, Won Tae;Youm, Jae Boum;Leem, Chae Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.537-546
    • /
    • 2013
  • Deiters' cells are the supporting cells in organ of Corti and are suggested to play an important role in biochemical and mechanical modulation of outer hair cells. We successfully isolated functionally different $K^+$ currents from Deiters' cells of guinea pig using whole cell patch clamp technique. With high $K^+$ pipette solution, depolarizing step pulses activated strongly outward rectifying currents which were dose-dependently blocked by clofilium, a class III anti-arrhythmic $K^+$ channel blocker. The remaining outward current was transient in time course whereas the clofilium-sensitive outward current showed slow inactivation and delayed rectification. Addition of 5 mM tetraethylammonium (TEA) further blocked the remaining current leaving a very fast inactivating transient outward current. Therefore, at least three different types of $K^+$ current were identified in Deiters' cells, such as fast activating and fast inactivating current, fast activating slow inactivating current, and very fast inactivating transient outward current. Physiological role of them needs to be established.

Synthesis and Biological Evaluation of 1-Heteroarylmethyl 1,4-Diazepanes Derivatives as Potential T-type Calcium Channel Blockers

  • Ullapu, Punna Reddy;Ku, Su-Jin;Choi, Yeon-Hee;Park, Ji-Yeon;Han, So-Yeop;Baek, Du-Jong;Lee, Jae-Kyun;Pae, Ae-Nim;Min, Sun-Joon;Cho, Yong-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3063-3073
    • /
    • 2011
  • The synthesis and biological evaluation of 1-heteroarylmethyl 1,4-diazepane derivatives as potential T-type calcium channel blockers is described. In this study, we have identified the compound 21i exhibiting the most potent T-type calcium channel blocking activity with $IC_{50}$ value of 0.20 ${\mu}M$, which is superior to that of mibefradil.

Vibrio vulnificus Cytolysin Forms Anion-selective Pores on the CPAE Cells, a Pulmonary Endothelial Cell Line

  • Choi, Bok-Hee;Park, Byung-Hyun;Kwak, Yong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.259-264
    • /
    • 2004
  • Cytolysin produced by Vibrio vulnificus has been incriminated as one of the important virulence determinants in V. vulnificus infection. Ion selectivity of cytolysin-induced pores was examined in a CPAE cell, a cell line of pulmonary endothelial cell, using inside-out patch clamp techniques. In symmetrical NaCl concentration (140 mM), intracellular or extracellular application of cytolysin formed ion-permeable pores with a single channel conductance of $37.5{\pm}4.0$ pS. The pore currents were consistently maintained after washout of cytolysin. Replacement of $Na^+$ in bath solution with monovalent ions $(K^+,\;Cs^+\;or\;TEA^+)$ or with divalent ions $(Mg^{2+},\;Ca^{2+})$ did not affect the pore currents. When the NaCl concentration in bath solution was lowered from 140 to 60 and 20 mM, the reversal potential shifted from 0 to -11.8 and -28.2 mV, respectively. The relative permeability of the cytolysin pores to anions measured at $-40\;mV\;was\;Cl^-\;=\;NO_2^-\;{\geq}\;Br^-\;=\;I^-\;> \;SCN^-\;>\;acetate^-\;>\;isethionate^-\;>\;ascorbic acid^-\;>\;EDTA^{2-},$ in descending order. The cytolysin-induced pore current was blocked by $CI^-$ channel blockers or nucleotides. These results indicate that V. vulnificus cytolysin forms anion-selective pores in CPAE cells.

Cytotoxicity of Vibrio vulnificus Cytolysin on Rat Neutrophils

  • Park, Kwang-Hyun;Rho, In-Whan;Park, Byung-Hyun;Kim, Jong-Suk;Kim, Hyung-Rho
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • Cytolysin produced by Vibrio vulnificus has been known to be lethal to mice by increasing vascular permeability and neutrophil sequestration in the lung. In the present study, a cytotoxic mechanism of V. vulnificus cytolysin on the neutrophil was investigated. Cytolysin rapidly bound to neutrophils and induced cell death, as determined by the trypan blue exclusion test. V. vulnificus cytolysin caused the depletion of cellular ATP without the release of ATP or lactate dehydrogenase. Formation of transmembrane pores was evidenced by the rapid efflux of potassium and 2-deoxy-D-[$^3H$]glucose from cytolysin-treated neutrophils. It was further confirmed by the rapid flow of monovalent ions in the patch clamp of cytolysin-treated neutrophil membrane. The pore formation was accompanied by the oligomerization of cytolysin monomers on the neutrophil membrane as demonstrated by immunoblot, which exhibited a 210 kDa band corresponding to a tetramer of the native cytolysin of $M_r$ 51,000. These findings indicate that V. vulnificus cytolysin rapidly binds to the neutrophil membrane and oligomerizes to form small transmembrane pores, which induce the efflux of potassium and the depletion of cellular ATP leading to cell death without cytolysis.

  • PDF

Modulation of Corydalis tuber on Glycine-induced Ion Current in Acutely Dissociated Rat Periaqueductal Gray Neuron

  • Cheong, Byung-Shik;Nam, Sang-Soo;Choi, Do-Young
    • The Journal of Korean Medicine
    • /
    • v.24 no.4
    • /
    • pp.34-42
    • /
    • 2003
  • This study was designed to investigate the modulation of the Corydalis tuber on glycine-activated ion current in rat periaqueductal gray (PAG) neurons. Aqueous extract from Corydalis tuber has been widely used for pain control such as dysmenorrhea, irregular menstruation or amenorrhea with abdominal cramping, neuralgia, headache and gastrointestinal spasm. The PAG region of the brain is known to be involved heavily with nociception. Modulation of the Corydalis tuber on glycine-induced ion current in rat periaqueductal gray (PAG) neurons was studied by a nystatin-perforated patch-clamp technique. High concentrations of Corydalis tuber elicited ion current, which was suppressed by strychnine application. Low concentrations of Corydalis tuber reduced glycine-induced ion currents in the PAG neurons. Inhibitory action of Corydalis tuber on glycine-activated ion current was reduced by treatment with naltrexone, a non- selective opioid antagonist. Application of N-methylmalemide (NEM), a sulfhydryl alkylating agent, also reduced the inhibitory action of Corydalis tuber on glycine-activated ion current in the PAG neurons. These results suggest that the inhibitory effect of Corydalis tuber on glycine-activated ion current in the PAG neurons is one of the analgesic mechanisms of the Corydalis tuber, which may activate descending pain control system in PAG neurons.

  • PDF

Effects of a ${\delta}-opioid$ Agonist on the Brainstem Vestibular Nuclear Neuronal Activity of Rats

  • Kim, Tae-Sun;Huang, Mei;Jang, Myung-Joo;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • This study was undertaken to investigate the effects of [$D-Ala^2$, D-Leu^5$]-enkephalin (DADLE) on the spontaneous activity of medial vestibular nuclear neurons of the rat. Sprague-Dawley rats, aged 14 to 16 days, were anesthetized with ether and decapitated. After enzymatic digestion, the brain stem portion of medial vestibular nuclear neuron was obtained by micropunching. The dissociated neurons were transferred to a recording chamber mounted on an inverted microscope, and spontaneous action potentials were recorded by standard patch-clamp techniques. The spontaneous action potentials were increased by DADLE in 12 cells and decreased in 3 cells. The spike frequency and resting membrane potential of these cells were increased by DADLE. The depth of afterhyperpolarization was not affected by DADLE. The potassium currents were decreased in 20 cells and increased in 5 cells. These results suggest that DADLE increases the neuronal activity of the medial vestibular nuclear neurons by altering resting membrane potential.

Effects of Nitric Oxide on Inhibitory Receptors of Rod Bipolar Cells of Rat Retina

  • Park, No-Gi;Bai, Sun-Ho;Jung, Chang-sub;Chun, Mynng-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.347-352
    • /
    • 2005
  • The effects of nitric oxide (NO) on inhibitory neurotransmitter receptors and some types of inhibitory receptors in dissociated rod bipolar cell (RBC) were investigated. In the whole cell voltage-clamping mode, the gamma-aminobutyric acid (GABA) activated current showed both sustained and transient components. GABA activated transient current was fully blocked by bicuculine, a $GABA_A$ receptor antagonist. The cis-4-aminocrotonic acid (CACA), a $GABA_C$ receptor agonist, evoked the sustained current that was not blocked by bicuculline (BIC). Glycine activated the transient current. These results indicate that the RBCs possess $GABA_A$, $GABA_C$, and glycine inhibitory receptors. Sodium nitroprusside (SNP), a NO analogue, reduced the currents activated by $GABA_A$ receptor only, however, did not reduce the currents activated by either $GABA_C$ or glycine receptors. This study signifies further that only NO depresses the fast inhibitory response activated by $GABA_A$ receptor in RBC. We, therefore, postulate that NO might depress the light-on/off transient inhibitory responses in RBCs in the rat retina.

Effects of Higenamine on the Calcium Current and the Action Potential in the Guinea-pig Myocytes (Higenamine이 단일심근세포의 Ca-전류 및 활동전압에 미치는 효과)

  • Kim, Young-Duck;So, In-Suk;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.169-177
    • /
    • 1987
  • The effects of higenamine were investigated in the single atrial and ventricular myocyte of the guinea pig by using patch clamp method. The results obtained were as follows: 1) Isoprenaline which is known to be ${\beta}-agonist$ increased the duration of action potential and calcium current in ventricular cells. 2) Higenamine also increased the duration of action potential and calcium current in ventricular myocytes. And its effect was blocked by propranolol. 3) In the atrial cells, isoprenaline showed ${\beta}-agonist$ effects, which were increasing the duration of action potential and calcium current same as in ventricular cells. 4) Higenamine, however, showed the opposite effects of ${\beta}-agonist$ which were decreasing the duration of action potential and calcium current. The above results suggest that higenamine has the typical ${\beta}-agonist$ effect in ventricular cells but inhibitory effect in atrial cells and this effect on atrium could be due to the reduction of calcium current.

  • PDF

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.