References
- Bohme E, Grossmann G, Herz J, Mulsch A, Spies C, Schultz G. Regulation of cyclic GMP formation by soluble guanylate cyclase: stimulation by NO-containing compounds. Adv Cyclic Nucleotide Protein Phosphorylation Res 17: 259-266, 1984
-
Chang Y, Covey DF, Weiss DS. Correlation of the apparent affinities and efficacies of
$\gamma$ -aminobutyric acidC receptor agonists. Mol Pharmacol 58: 1375-1380, 2000 https://doi.org/10.1124/mol.58.6.1375 - Chun MH, Han SH, Chung JW, Wassle H. Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol 332: 421-432, 1993 https://doi.org/10.1002/cne.903320404
- Chun MH, Wassle H. GABA-like immunoreactivity in the cat retina: electron microscopy. J Comp Neurol 279: 55-67, 1989. https://doi.org/10.1002/cne.902790106
- Cui J, Ma YP, Lipton SA, Pan ZH. Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. J Physiol 553: 895-909, 2003 https://doi.org/10.1113/jphysiol.2003.052092
- Dong CJ, Werblin FS. Use-dependent and use-independent blocking actions of picrotoxin and zinc at the GABAC receptor in retinal horizontal cells. Vision Res 36: 3997-4005, 1996 https://doi.org/10.1016/S0042-6989(96)00141-1
- Euler T, Wässle H. Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. J Neurophysiol 79: 1384-1395, 1998 https://doi.org/10.1152/jn.1998.79.3.1384
- Feigenspan A, Bormann J. Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase. Proc Natl Acad Sci USA 91: 10893-10897, 1994a https://doi.org/10.1073/pnas.91.23.10893
- Feigenspan A, Bormann J. Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. Eur J Pharmacol 288: 97-104, 1994b https://doi.org/10.1016/0922-4106(94)90014-0
- Feigenspan A, Wassle H, Bormann J. Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature 361: 159-162, 1993. https://doi.org/10.1038/361159a0
- Fletcher EL, Koulen P, Wässle H. GABAA and GABAC receptors on mammalian rod bipolar cells. J Comp Neurol 396: 351-365, 1998 https://doi.org/10.1002/(SICI)1096-9861(19980706)396:3<351::AID-CNE6>3.0.CO;2-1
- Freed MA, Smith RG, Sterling P. Rod bipolar array in the cat retina: pattern of input from rods and GABA-accumulating amacrine cells. J Comp Neurol 266: 445-455, 1987 https://doi.org/10.1002/cne.902660310
- Frumkes TE, Wu SM. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons. J Neurophysiol 64: 1043-1054, 1990 https://doi.org/10.1152/jn.1990.64.3.1043
- Fukami S, Uchida I, Mashimo T, Takenoshita M, Yoshiya I. Gamma subunit dependent modulation by nitric oxide (NO) in recombinant GABAA receptor. Neuroreport 9: 1089-1092, 1998 https://doi.org/10.1097/00001756-199804200-00024
- Gillette MA, Dacheux RF. GABA- and glycine-activated currents in the rod bipolar cell of the rabbit retina. J Neurophysiol 74: 856-875, 1995 https://doi.org/10.1152/jn.1995.74.2.856
- Hartveit E. Membrane currents evoked by ionotropic glutamate receptor agonists in rod bipolar cells in the rat retinal slice preparation. J Neurophysiol 76: 401-422, 1996 https://doi.org/10.1152/jn.1996.76.1.401
- Johnston GAR. GABAC receptors: relatively simple transmittergated ion channels. Trends Pharmacol Sci 17: 319-323, 1996 https://doi.org/10.1016/0165-6147(96)10038-9
- Karschin A, Wässle H. Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. J Neurophysiol 63: 860- 876, 1990 https://doi.org/10.1152/jn.1990.63.4.860
- Kim IB, Lee MY, Oh SJ, Kim KY, Chun MH. Double-labeling techniques demonstrate that rod bipolar cells are under GABAergic control in the inner plexiform layer of the rat retina. Cell Tissue Res 292: 17-25, 1998 https://doi.org/10.1007/s004410051030
- Kolb H, Famiglietti EV. Rod and Cone bipolar pathways in the inner plexiform layer of cat retina. Science 186: 47-49, 1974 https://doi.org/10.1126/science.186.4158.47
- McGillem GS, Rotolo TC, Dacheux RF. GABA responses of rod bipolar cells in rabbit retinal slices. Vis Neurosci 17: 381-389, 2000 https://doi.org/10.1017/S0952523800173067
- Moncada S, Rees DD, Schulz R, Palmer RMJ. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 88: 2166-2170, 1991 https://doi.org/10.1073/pnas.88.6.2166
- Nelson R, Schaffner AE, Li YX, Walton MK. Distribution of GABAClike responses among acutely dissociated rat retinal neurons. Vis Neurosci 16: 179-190, 1999
- Ohkuma S, Katsura M. Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64: 97-108, 2001 https://doi.org/10.1016/S0301-0082(00)00041-1
- Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664-666, 1988 https://doi.org/10.1038/333664a0
- Pan ZH, Lipton SA. Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cell terminals. J Neurosci 15: 2668-2679, 1995
- Picaud S, Pattnaik B, Hicks D, Forster V, Fontaine V, Sahel J, Dreyfus H. GABAA and GABAC receptors in adult porcine cones: evidence from a photoreceptor-glia co-culture model. J Physiol 513: 33-42, 1998 https://doi.org/10.1111/j.1469-7793.1998.033by.x
-
Pourcho BG, Goebel DJ. A combined golgi and autoradiographic study of (
$^3H$ )Glycine-Accumulating Amacrine cells in the cat retina. J Comp Neurol 233: 473-480, 1985 https://doi.org/10.1002/cne.902330406 - Qian H, Dowling JE. Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina. J Neurosci 14: 4299-4307, 1994
- Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153-175, 1993 https://doi.org/10.1016/0167-4889(93)90006-B
- Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu Rev Neurosci 17: 153-183, 1994 https://doi.org/10.1146/annurev.ne.17.030194.001101
- Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325: 152-168, 1992 https://doi.org/10.1002/cne.903250203
- Vaquero CF, de la Villa P. Localisation of the GABAC receptors at the axon terminal of the rod bipolar cells of the mouse retina. Neurosci Res 35: 1-7, 1999 https://doi.org/10.1016/S0168-0102(99)00050-4
- Veruki ML, Yeh HH. Vasoactive intestinal polypeptide modulates GABAA receptor function through activation of cyclic AMP. Visual Neurosci 11: 899-908, 1994 https://doi.org/10.1017/S0952523800003850
- Wassle H, Grnert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361: 537- 551, 1995 https://doi.org/10.1002/cne.903610315
- Wassle H, Koulen P, Brandsttter JH, Fletcher EL, Becker CM. Glycine and GABA receptors in the mammalian retina. Vision Res 38: 1411-1430, 1998. https://doi.org/10.1016/S0042-6989(97)00300-3
- Wassle H, Yamashita M, Greferath U, Grunert U, Muller F. The rod bipolar cell of the mammalian retina. Vis Neurosci 7: 99-112, 1991. https://doi.org/10.1017/S095252380001097X
- Wexler EM, Stanton PK, Nawy S. Nitric oxide depresses GABAA receptor function via coactivation of cGMP-dependent kinase and phosphodiesterase. J Neurosci 18: 2342-2349, 1998
- Yeh HH, Lee MB, Cheun JE. Properties of GABA-activated wholecell currents in bipolar cells of the rat retina. Vis Neurosci 4: 349-357, 1990 https://doi.org/10.1017/S0952523800004557
- Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABAC receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 22: 121-132, 2001 https://doi.org/10.1016/S0165-6147(00)01625-4