Effects of Nitric Oxide on Inhibitory Receptors of Rod Bipolar Cells of Rat Retina

  • Park, No-Gi (Deportment of Physics add Biophysics, The Catholic University of Korea) ;
  • Bai, Sun-Ho (Deportment of Physics add Biophysics, The Catholic University of Korea) ;
  • Jung, Chang-sub (Deportment of Physics add Biophysics, The Catholic University of Korea) ;
  • Chun, Mynng-Hoon (Deportment of Anatomy, College of Medicine, The Catholic University of Korea)
  • Published : 2005.12.21

Abstract

The effects of nitric oxide (NO) on inhibitory neurotransmitter receptors and some types of inhibitory receptors in dissociated rod bipolar cell (RBC) were investigated. In the whole cell voltage-clamping mode, the gamma-aminobutyric acid (GABA) activated current showed both sustained and transient components. GABA activated transient current was fully blocked by bicuculine, a $GABA_A$ receptor antagonist. The cis-4-aminocrotonic acid (CACA), a $GABA_C$ receptor agonist, evoked the sustained current that was not blocked by bicuculline (BIC). Glycine activated the transient current. These results indicate that the RBCs possess $GABA_A$, $GABA_C$, and glycine inhibitory receptors. Sodium nitroprusside (SNP), a NO analogue, reduced the currents activated by $GABA_A$ receptor only, however, did not reduce the currents activated by either $GABA_C$ or glycine receptors. This study signifies further that only NO depresses the fast inhibitory response activated by $GABA_A$ receptor in RBC. We, therefore, postulate that NO might depress the light-on/off transient inhibitory responses in RBCs in the rat retina.

Keywords

References

  1. Bohme E, Grossmann G, Herz J, Mulsch A, Spies C, Schultz G. Regulation of cyclic GMP formation by soluble guanylate cyclase: stimulation by NO-containing compounds. Adv Cyclic Nucleotide Protein Phosphorylation Res 17: 259-266, 1984
  2. Chang Y, Covey DF, Weiss DS. Correlation of the apparent affinities and efficacies of $\gamma$-aminobutyric acidC receptor agonists. Mol Pharmacol 58: 1375-1380, 2000 https://doi.org/10.1124/mol.58.6.1375
  3. Chun MH, Han SH, Chung JW, Wassle H. Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol 332: 421-432, 1993 https://doi.org/10.1002/cne.903320404
  4. Chun MH, Wassle H. GABA-like immunoreactivity in the cat retina: electron microscopy. J Comp Neurol 279: 55-67, 1989. https://doi.org/10.1002/cne.902790106
  5. Cui J, Ma YP, Lipton SA, Pan ZH. Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. J Physiol 553: 895-909, 2003 https://doi.org/10.1113/jphysiol.2003.052092
  6. Dong CJ, Werblin FS. Use-dependent and use-independent blocking actions of picrotoxin and zinc at the GABAC receptor in retinal horizontal cells. Vision Res 36: 3997-4005, 1996 https://doi.org/10.1016/S0042-6989(96)00141-1
  7. Euler T, Wässle H. Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. J Neurophysiol 79: 1384-1395, 1998 https://doi.org/10.1152/jn.1998.79.3.1384
  8. Feigenspan A, Bormann J. Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase. Proc Natl Acad Sci USA 91: 10893-10897, 1994a https://doi.org/10.1073/pnas.91.23.10893
  9. Feigenspan A, Bormann J. Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. Eur J Pharmacol 288: 97-104, 1994b https://doi.org/10.1016/0922-4106(94)90014-0
  10. Feigenspan A, Wassle H, Bormann J. Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature 361: 159-162, 1993. https://doi.org/10.1038/361159a0
  11. Fletcher EL, Koulen P, Wässle H. GABAA and GABAC receptors on mammalian rod bipolar cells. J Comp Neurol 396: 351-365, 1998 https://doi.org/10.1002/(SICI)1096-9861(19980706)396:3<351::AID-CNE6>3.0.CO;2-1
  12. Freed MA, Smith RG, Sterling P. Rod bipolar array in the cat retina: pattern of input from rods and GABA-accumulating amacrine cells. J Comp Neurol 266: 445-455, 1987 https://doi.org/10.1002/cne.902660310
  13. Frumkes TE, Wu SM. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons. J Neurophysiol 64: 1043-1054, 1990 https://doi.org/10.1152/jn.1990.64.3.1043
  14. Fukami S, Uchida I, Mashimo T, Takenoshita M, Yoshiya I. Gamma subunit dependent modulation by nitric oxide (NO) in recombinant GABAA receptor. Neuroreport 9: 1089-1092, 1998 https://doi.org/10.1097/00001756-199804200-00024
  15. Gillette MA, Dacheux RF. GABA- and glycine-activated currents in the rod bipolar cell of the rabbit retina. J Neurophysiol 74: 856-875, 1995 https://doi.org/10.1152/jn.1995.74.2.856
  16. Hartveit E. Membrane currents evoked by ionotropic glutamate receptor agonists in rod bipolar cells in the rat retinal slice preparation. J Neurophysiol 76: 401-422, 1996 https://doi.org/10.1152/jn.1996.76.1.401
  17. Johnston GAR. GABAC receptors: relatively simple transmittergated ion channels. Trends Pharmacol Sci 17: 319-323, 1996 https://doi.org/10.1016/0165-6147(96)10038-9
  18. Karschin A, Wässle H. Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. J Neurophysiol 63: 860- 876, 1990 https://doi.org/10.1152/jn.1990.63.4.860
  19. Kim IB, Lee MY, Oh SJ, Kim KY, Chun MH. Double-labeling techniques demonstrate that rod bipolar cells are under GABAergic control in the inner plexiform layer of the rat retina. Cell Tissue Res 292: 17-25, 1998 https://doi.org/10.1007/s004410051030
  20. Kolb H, Famiglietti EV. Rod and Cone bipolar pathways in the inner plexiform layer of cat retina. Science 186: 47-49, 1974 https://doi.org/10.1126/science.186.4158.47
  21. McGillem GS, Rotolo TC, Dacheux RF. GABA responses of rod bipolar cells in rabbit retinal slices. Vis Neurosci 17: 381-389, 2000 https://doi.org/10.1017/S0952523800173067
  22. Moncada S, Rees DD, Schulz R, Palmer RMJ. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci USA 88: 2166-2170, 1991 https://doi.org/10.1073/pnas.88.6.2166
  23. Nelson R, Schaffner AE, Li YX, Walton MK. Distribution of GABAClike responses among acutely dissociated rat retinal neurons. Vis Neurosci 16: 179-190, 1999
  24. Ohkuma S, Katsura M. Nitric oxide and peroxynitrite as factors to stimulate neurotransmitter release in the CNS. Prog Neurobiol 64: 97-108, 2001 https://doi.org/10.1016/S0301-0082(00)00041-1
  25. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664-666, 1988 https://doi.org/10.1038/333664a0
  26. Pan ZH, Lipton SA. Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cell terminals. J Neurosci 15: 2668-2679, 1995
  27. Picaud S, Pattnaik B, Hicks D, Forster V, Fontaine V, Sahel J, Dreyfus H. GABAA and GABAC receptors in adult porcine cones: evidence from a photoreceptor-glia co-culture model. J Physiol 513: 33-42, 1998 https://doi.org/10.1111/j.1469-7793.1998.033by.x
  28. Pourcho BG, Goebel DJ. A combined golgi and autoradiographic study of ($^3H$)Glycine-Accumulating Amacrine cells in the cat retina. J Comp Neurol 233: 473-480, 1985 https://doi.org/10.1002/cne.902330406
  29. Qian H, Dowling JE. Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina. J Neurosci 14: 4299-4307, 1994
  30. Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153-175, 1993 https://doi.org/10.1016/0167-4889(93)90006-B
  31. Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu Rev Neurosci 17: 153-183, 1994 https://doi.org/10.1146/annurev.ne.17.030194.001101
  32. Strettoi E, Raviola E, Dacheux RF. Synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the rabbit retina. J Comp Neurol 325: 152-168, 1992 https://doi.org/10.1002/cne.903250203
  33. Vaquero CF, de la Villa P. Localisation of the GABAC receptors at the axon terminal of the rod bipolar cells of the mouse retina. Neurosci Res 35: 1-7, 1999 https://doi.org/10.1016/S0168-0102(99)00050-4
  34. Veruki ML, Yeh HH. Vasoactive intestinal polypeptide modulates GABAA receptor function through activation of cyclic AMP. Visual Neurosci 11: 899-908, 1994 https://doi.org/10.1017/S0952523800003850
  35. Wassle H, Grnert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 361: 537- 551, 1995 https://doi.org/10.1002/cne.903610315
  36. Wassle H, Koulen P, Brandsttter JH, Fletcher EL, Becker CM. Glycine and GABA receptors in the mammalian retina. Vision Res 38: 1411-1430, 1998. https://doi.org/10.1016/S0042-6989(97)00300-3
  37. Wassle H, Yamashita M, Greferath U, Grunert U, Muller F. The rod bipolar cell of the mammalian retina. Vis Neurosci 7: 99-112, 1991. https://doi.org/10.1017/S095252380001097X
  38. Wexler EM, Stanton PK, Nawy S. Nitric oxide depresses GABAA receptor function via coactivation of cGMP-dependent kinase and phosphodiesterase. J Neurosci 18: 2342-2349, 1998
  39. Yeh HH, Lee MB, Cheun JE. Properties of GABA-activated wholecell currents in bipolar cells of the rat retina. Vis Neurosci 4: 349-357, 1990 https://doi.org/10.1017/S0952523800004557
  40. Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABAC receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 22: 121-132, 2001 https://doi.org/10.1016/S0165-6147(00)01625-4