• Title/Summary/Keyword: Pasternak model

Search Result 159, Processing Time 0.016 seconds

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Zouatnia, Nafissa;Meziane, Mohamed Ait Amar;Kassoul, Amar
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.509-518
    • /
    • 2017
  • The objective of the present paper is to investigate the bending behavior with stretching effect of carbon nanotube-reinforced composite (CNTRC) beams. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of bending analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the bending responses of CNTRC beam are discussed.

Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution

  • Cao, Yan;Musharavati, Farayi;Baharom, Shahrizan;Talebizadehsardari, Pouyan;Sebaey, Tamer A.;Eyvazian, Arameh;Zain, Azlan Mohd
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.253-258
    • /
    • 2020
  • Vibration response in a sandwich plate with a nanocompiste core covered by magnetic layer is presented. The core is armed by functionalyy graded-carbon nanotubes (FG-CNTs) where the Mori-Tanaka law is utilized assuming agglomeration effects. The structure plate is located on elastic medium simulated by Pasternak model. The governing equations are derived based on Mindlin theory and Hamilton's principle. Utilizing diffrential quadrature method (DQM), the frequency of the structure is calculated and the effects of magnetic layer, volume percent and agglomeration of CNTs, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with considering magnetic layer, the frequency of structure is increased.

Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method

  • Pour, Hasan Rahimi;Vossough, Hossein;Heydari, Mohammad Mehdi;Beygipoor, Gholamhossein;Azimzadeh, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1061-1073
    • /
    • 2015
  • This paper presents a nonlocal sinusoidal shear deformation beam theory (SDBT) for the nonlinear vibration of single walled carbon nanotubes (CNTs). The present model is capable of capturing both small scale effect and transverse shear deformation effects of CNTs, and does not require shear correction factors. The surrounding elastic medium is simulated based on Pasternak foundation. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the CNTs are derived using Hamilton's principle. Differential quadrature method (DQM) for the natural frequency is presented for different boundary conditions, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory (TBT). The effects of nonlocal parameter, boundary condition, aspect ratio on the frequency of CNTs are considered. The comparison firmly establishes that the present beam theory can accurately predict the vibration responses of CNTs.

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium

  • Aissani, Khadidja;Bouiadjra, Mohamed Bachir;Ahouel, Mama;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.743-763
    • /
    • 2015
  • This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to capture both the nonlocal parameter and the shear deformation effect without employing shear correction factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale-beam are obtained using Hamilton's principle. The effect of the surrounding elastic medium on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and the obtained results compare well with those predicted by the other nonlocal theories available in literature.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.65-84
    • /
    • 2016
  • This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam are supposed to be graded continuously in the thickness direction based on power-law model. To consider the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are provided. Due to the shortage of same results in the literature, it is expected that the results of the present study will be instrumental for design of size-dependent MEE-FG nanobeams.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.